Multiprocessors and
Thread-Level Parallelism

The turning away from the conventional organization came in the
middle 1960s, when the law of diminishing returns began to take
effect in the effort to increase the operational speed of a computer....
Electronic circuits are ultimately limited in their speed of operation by
the speed of light ...and many of the circuits were already operating in
the nanosecond range.

W. Jack Bouknight et al.
The llliac IV System (1972)

We are dedicating all of our future product development to multicore
designs. We believe this is a key inflection point for the industry.

Intel President Paul Otellini,
describing Intel’s future direction at the
Intel Developers Forum in 2005
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4.1

Introduction

As the quotation that opens this chapter shows, the view that advances in uni-
processor architecture were nearing an end has been held by some researchers for
many years. Clearly these views were premature; in fact, during the period of
1986-2002, uniprocessor performance growth, driven by the microprocessor,
was at its highest rate since the first transistorized computers in the late 1950s
and early 1960s.

Nonetheless, the importance of multiprocessors was growing throughout the
1990s as designers sought a way to build servers and supercomputers that
achieved higher performance than a single microprocessor, while exploiting the
tremendous cost-performance advantages of commodity microprocessors. As
we discussed in Chapters 1 and 3, the slowdown in uniprocessor performance
arising from diminishing returns in exploiting ILP, combined with growing con-
cern over power, is leading to a new era in computer architecture—an era where
multiprocessors play a major role. The second quotation captures this clear
inflection point.

This trend toward more reliance on multiprocessing is reinforced by other
factors:

m A growing interest in servers and server performance
m A growth in data-intensive applications

m The insight that increasing performance on the desktop is less important (out-
side of graphics, at least)

= An improved understanding of how to use multiprocessors effectively, espe-
cially in server environments where there is significant natural thread-level
parallelism

m The advantages of leveraging a design investment by replication rather than
unique design—all multiprocessor designs provide such leverage

That said, we are left with two problems. First, multiprocessor architecture is
a large and diverse field, and much of the field is in its youth, with ideas coming
and going and, until very recently, more architectures failing than succeeding.
Full coverage of the multiprocessor design space and its trade-offs would require
another volume. (Indeed, Culler, Singh, and Gupta [1999] cover only multipro-
cessors in their 1000-page book!) Second, broad coverage would necessarily
entail discussing approaches that may not stand the test of time—something we
have largely avoided to this point.

For these reasons, we have chosen to focus on the mainstream of multiproces-
sor design: multiprocessors with small to medium numbers of processors (4 to
32). Such designs vastly dominate in terms of both units and dollars. We will pay
only slight attention to the larger-scale multiprocessor design space (32 or more
processors), primarily in Appendix H, which covers more aspects of the design of
such processors, as well as the behavior performance for parallel scientific work-
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loads, a primary class of applications for large-scale multiprocessors. In the
large-scale multiprocessors, the interconnection networks are a critical part of the
design; Appendix E focuses on that topic.

A Taxonomy of Parallel Architectures

We begin this chapter with a taxonomy so that you can appreciate both the
breadth of design alternatives for multiprocessors and the context that has led to
the development of the dominant form of multiprocessors. We briefly describe
the alternatives and the rationale behind them; a longer description of how these
different models were born (and often died) can be found in Appendix K.

The idea of using multiple processors both to increase performance and to
improve availability dates back to the earliest electronic computers. About 40
years ago, Flynn [1966] proposed a simple model of categorizing all computers
that is still useful today. He looked at the parallelism in the instruction and data
streams called for by the instructions at the most constrained component of the
multiprocessor, and placed all computers into one of four categories:

1. Single instruction stream, single data stream (SISD)—This category is the
Uniprocessor.

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed by multiple processors using different data streams. SIMD
computers exploit data-level parallelism by applying the same operations to
multiple items of data in paraltel. Each processor has its own data memory
(hence multiple data), but there is a single instruction memory and control
processor, which fetches and dispatches instructions. For applications that
display significant data-level parallelism, the SIMD approach can be very
efficient. The multimedia extensions discussed in Appendices B and C are a
form of SIMD parallelism. Vector architectures, discussed in Appendix F, are
the largest class of SIMD architectures. SIMD approaches have experienced a
rebirth in the last few years with the growing importance of graphics perfor-
mance, especially for the game market. SIMD approaches are the favored
method for achieving the high performance needed to create realistic three-
dimensional, real-time virtual environments.

3. Multiple instruction streams, single data stream (MISD)—No commercial
multiprocessor of this type has been built to date.

4. Multiple instruction streams, multiple data streams (MIMD)—Each proces-
sor fetches its own instructions and operates on its own data. MIMD comput-
ers exploit thread-level parallelism, since multiple threads operate in parallel.
In general, thread-level parallelism is more flexible than data-level parallel-
ism and thus more generally applicable.

This is a coarse model, as some multiprocesso.s are hybrids of these categories.
Nonetheless, it is useful to put a framework on the design space.
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Because the MIMD model can exploit thread-level parallelism, it is the archi-
tecture of choice for general-purpose multiprocessors and our focus in this chap-
ter. Two other factors have also contributed to the rise of the MIMD
multiprocessors:

1. MIMDs offer flexibility. With the correct hardware and software support,
MIMD:s can function as single-user multiprocessors focusing on high perfor-
mance for one application, as multiprogrammed multiprocessors running
many tasks simultaneously, or as some combination of these functions.

2. MIMDs can build on the cost-performance advantages of off-the-shelf pro-
cessors. In fact, nearly all multiprocessors built today use the same micropro-
cessors found in workstations and single-processor servers. Furthermore,
multicore chips leverage the design investment in a single processor core by
replicating it.

One popular class of MIMD computers are clusters, which often use stan-
dard components and often standard network technology, so as to leverage as
much commodity technology as possible. In Appendix H we distinguish two
different types of clusters: commodity clusters, which rely entirely on third-
party processors and interconnection technology, and custom clusters, in which
a designer customizes either the detailed node design or the interconnection
network, or both.

_In a commodity cluster, the nodes of a cluster are often blades or rack-
mounted servers (including small-scale multiprocessor servers). Applications that
focus on throughput and require almost no communication among threads, such
as Web serving, multiprogramming, and some transaction-processing applica-
‘tions, can be accommodated inexpensively on a cluster. Commodity clusters are
often assembled by users or computer center directors, rather than by vendors.

Custom clusters are typically focused on parallel applications that can
exploit large amounts of parallelism on a single problem. Such applications
require a significant amount of communication during the computation, and
customizing the node and interconnect design makes such communication
more efficient than in a commodity cluster. Currently, the largest and fastest
multiprocessors in existence are custom clusters, such as the IBM Blue Gene,
which we discuss in Appendix H.

Starting in the 1990s, the increasing capacity of a single chip allowed design-
ers to place multiple processors on a single die. This approach, initially called on-
chip multiprocessing or single-chip multiprocessing, has come to be called multi-
core, a name arising from the use of multiple processor cores on a single die. In
such a design, the multiple cores typically share some resources, such as a
second- or third-level cache or memory and I/O buses. Recent processors, includ-
ing the IBM PowerS5, the Sun T1, and the Intel Pentium D and Xeon-MP, are mul-
ticore and multithreaded. Just as using multiple copies of a microprocessor in a
multiprocessor leverages a design investment through replication, a multicore
achieves the same advantage relying more on replication than the alternative of
building a wider superscalar.
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{ With an MIMD., each processor is executing its own instruction stream. In
many cases, each processor executes a different process. A process is a segment
of code that may be run independently; the state of the process contains all the
information necessary to execute that program on a processor. In a multipro-
grammed environment, where the processors may be running independent tasks,
each process is typically independent of other processes. -

It is also useful to be able to have multiple processors executing a single pro-
gram and sharing the code and most of their address space. When multiple pro-
cesses share code and data in this way, they are often called threads. Today. the
term thread is often used in a casual way to refer to multiple loci of execution that
may run on different processors, even when they do not share an address space.
For example, a multithreaded architecture actually allows the simultaneous exe-
cution of multiple processes, with potentially separate address spaces, as well as
multiple threads that share the same address space.

To take advantage of an MIMD multiprocessor with n processors, we must
usually have at least n threads or processes to execute. The independent threads
within a single process are typically identified by the programmer or created by
the compiler. The threads may come from large-scale, independent processes
scheduled and manipulated by the operating system. At the other extreme, a
thread may consist of a few tens of iterations of a loop, generated by a parallel
compiler exploiting data parallelism in the loop. Although the amount of compu-
tation assigned to a thread, called the grain size, is important in considering how
to exploit thread-level parallelism efficiently, the important qualitative distinction
from instruction-level parallelism is that thread-level parallelism is identified at a
high level by the software system and that the threads consist of hundreds to mil-
lions of instructions that may be executed in parallel.

Threads can also be used to exploit data-level parallelism, although the over-
head is likely to be higher than would be seen in an SIMD computer. This over-
head means that grain size must be sufficiently large to exploit the parallelism
efficiently. For example, although a vector processor (see Appendix F) may be
able to efficiently parallelize operations on short vectors, the resulting grain size
when the parallelism is split among many threads may be so small that the over-
head makes the exploitation of the parallelism prohibitively expensive.

Existing MIMD multiprocessors fall into two classes, depending on the num-
ber of processors involved, which in turn dictates a memory organization and
interconnect strategy. We refer to the multiprocessors by their memory organiza-
tion because what constitutes a small or large number of processors is likely to
change over time.

The first group, which we call centralized shared-memory architectures, has
at most a few dozen processor chips (and less than 100 cores) in 2006. For multi-
processors with small processor counts, it is possible for the processors to share a
single centralized memory. With large caches, a single memory, possibly with
multiple banks, can satisfy the memory demands of a small number of proces-
sors. By using multiple point-to-point connections, or a switch, and adding addi-
tional memory banks, a centralized shared-memory design can be scaled to a few
dozen processors. Although scaling beyond that is technically conceivable,
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sharing a centralized memory becomes less attractive as the number of proces-
sors sharing it increases.

Because there is a single main memory that has a symmetric relationship to
all processors and a uniform access time from any processor, these multiproces-
sors are most often called symmetric (shared-memory) multiprocessors (SMPs),
and this style of architecture is sometimes called uniform memory access (UMA),
arising from the fact that all processors have a uniform latency from memory,
even if the memory is organized into multiple banks. Figure 4.1 shows what these
multiprocessors look like. This type of symmetric shared-memory architecture is
currently by far the most popular organization. The architecture of such multipro-
cessors is the topic of Section 4.2.

The second group consists of multiprocessors with physically distributed
memory. Figure 4.2 shows what these multiprocessors look like. To support
larger processor counts, memory must be distributed among the processors
rather than centralized; otherwise the memory system would not be able to sup-
port the bandwidth demands of a larger number of processors without incurring
excessively long access latency. With the rapid increase in processor perfor-
mance and the associated increase in a processor’s memory bandwidth require-
ments, the size of a multiprocessor for which distributed memory is preferred
continues to shrink. The larger number of processors also raises the need for a
high-bandwidth interconnect, of which we will see examples in Appendix E.

Processor Processor Processor @

One or One or One or One or
more levels more levels more levels more levels
of cache of cache of cache of cache

Main memory 110 system

Figure 4.1 Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystems share the same physical memory, typically connected by
one or more buses or a switch.The key architectural property is the uniform access time
to all of memory from all the processors.
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Figure 4.2 The basic architecture of a distributed-memory multiprocessor consists
of individual nodes containing a processor, some memory, typically some I/0, and
an interface to an interconnection network that connects all the nodes. Individual
nodes may contain a small number of processors, which may be interconnected by a
small bus or a different interconnection technology, which is less scalable than the glo-
bal interconnection network.

Both direction networks (i.e., switches) and indirect networks (typically multi-
dimensional meshes) are used.

Distributing the memory among the nodes has two major benefits. First, it is a
cost-effective way to scale the memory bandwidth if most of the accesses are to
the local memory in the node. Second, it reduces the latency for accesses to the
local memory. These two advantages make distributed memory attractive at
smaller processor counts as processors get ever faster and require more memory
bandwidth and lower memory latency. The key disadvantages for a distributed-
memory architecture are that communicating data between processors becomes
somewhat more complex, and that it requires more effort in the software to take
advantage of the increased memory bandwidth afforded by distributed memories.
As we will see shortly, the use of distributed memory also leads to two different
paradigms for interprocessor communication.

Models for Communication and Memory Architecture

As discussed earlier, any large-scale multiprocessor must use multiple memories
that are physically distributed with the processors. There are two alternative
architectural approaches that differ in the method used for communicating data
among processors.

In the first method, communication occurs through a shared address space, as
it does in a symmetric shared-memory architecture. The physically separate
memories can be addressed 2s one logically shared address space, meaning that a
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memory reference can be made by any processor to any memory location, assum-
ing it has the correct access rights. These multiprocessors are called distributed
shared 1:emory (DSM) architectures. The term shared memory refers to the fact
that the address space is shared; that is, the same physical address on two proces-
sors refers to the same location in memory. Shared memory does not mean that
there is a single, centralized memory. In contrast to the symmetric shared-mem-
ory multiprocessors, also known as UMAs (uniform memory access), the DSM
multiprocessors are also called NUMASs (nonuniform memory access), since the
access time depends on the location of a data word in memory.

Alternatively, the address space can consist of multiple private address spaces
that are logically disjoint and cannot be addressed by a remote processor. In such
multiprocessors, the same physical address on two different processors refers to
two different locations in two different memories. Each processor-memory mod-
ule is essentially a separate computer. Initially, such computers were built with
different processing nodes and specialized interconnection networks. Today,
most designs of this type are actually clusters, which we discuss in Appendix H.

With each of these organizations for the address space, there is an associated
communication mechanism. For a multiprocessor with a shared address space,
that address space can be used to communicate data implicitly via load and store
operations—hence the name shared memory for such multiprocessors. For a mul-
tiprocessor with multiple address spaces, communication of data is done by
explicitly passing messages among the processors. Therefore, these multiproces-
sors are often called message-passing multiprocessors. Clusters inherently use
message passing.

Challenges of Parallel Processing

The application of multiprocessors ranges from running independent tasks with
essentially no communication to running parallel programs where threads must
communicate to complete the task. Two important hurdles, both explainable with
Amdahl’s Law, make parallel processing challenging. The degree to which these
hurdles are difficult or easy is determined both by the application and by the
architecture.

The first hurdle has to do with the limited parallelism available in programs,
and the second arises from the relatively high cost of communications. Limita-
tions in available parallelism make it difficult to achieve good speedups in any
parallel processor, as our first example shows.

Example

Answer

Suppose you want to achieve a speedup of 80 with 100 processors. What fraction
of the original computation can be sequential?

Amdahl’s Law is
1

Speedup = 0
Fraction enhanced

——————— + (I — Fraction
Speedupenhanced

enhanced )
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For simplicity in this example, assume that the program operates in only two
modes: parallel with all processors fully used. which is the enhanced mode, or
serial with only one processor in use. With this simplification, the speedup in
enhanced mode is simply the number of processors, while the fraction of
enhanced mode is the time spent in parallel mode. Substituting into the previous
equation:

i

= Fraction__
parallel (1 — Fraction

100 parallel )

Simplifying this equation yields

0.8 x Fractionparallel +80x(1- Fraclionpara"d) =1
80 -79.2 x Fractionpm}Iel =1

. 80-1

Fractlonpmllel = ETVR

Fractionpalmllel = 0.9975

Thus, to achieve a speedup of 80 with 100 processors, only 0.25% of original
computation can be sequential. Of course, to achieve linear speedup (speedup of
n with n processors), the entire program must usually be parallel with no serial
portions. In practice, programs do not just operate in fully parallel or sequential
mode, but often use less than the full complement of the processors when running
in parallel mode.

The second major challenge in parallel processing involves the large latency
of remote access in a parallel processor. In existing shared-memory multiproces-
sors, communication of data between processors may cost anywhere from 50
clock cycles (for multicores) to over 1000 clock cycles (for large-scale multipro-
cessors), depending on the communication mechanism, the type of interconnec-
tion network, and the scale of the multiprocessor. The effect of long
communication delays is clearly substantial. Let’s consider a simple example.

Example

Answer

Suppose we have an application running on a 32-processor multiprocessor, which
has a 200 ns time to handle reference to a remote memory. For this application,
assume that all the references except those involving communication hit in the
local memory hierarchy, which is slightly optimistic. Processors are stalled on a
remote request, and the processor clock rate is 2 GHz. If the base CPI (assuming
that all references hit in the cache) is 0.5, how much faster is the multiprocessor if
there is no communication versus if 0.2% of the instructions involve a remote
communication reference?

It is simpler to first calculate the CPI. The effective CPI for the multiprocessor
with 0.2% remote references is
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CPI = Base CPI + Remote request rate X Remote request cost
= 0.5 + 0.2% x Remote request cost

The remote request cost is

Remote access cost _ 200 ns
Cycle time 0.5 ns

= 400 cycles

Hence we can compute the CPI:

CPI=05+08=13

The multiprocessor with all local references is 1.3/0.5 = 2.6 times faster. In prac-
tice, the performance analysis is much more complex, since some fraction of the
noncommunication references will miss in the local hierarchy and the remote
access time does not have a single constant value. For example, the cost of a
remote reference could be quite a bit worse, since contention caused by many ref-
erences trying to use the global interconnect can lead to increased delays.

These problems—insufficient parallelism and long-latency remote communi-
cation—are the two biggest performance challenges in using multiprocessors.
The problem of inadequate application parallelism must be attacked primarily in
software with new algorithms that can have better parallel performance. Reduc-
ing the impact of long remote latency can be attacked both by the architecture
and by the programmer. For example, we can reduce the frequency of remote
accesses with either hardware mechanisms, such as caching shared data, or soft-
ware mechanisms, such as restructuring the data to make more accesses local. We
can try to tolerate the latency by using multithreading (discussed in Chapter 3 and
later in this chapter) or by using prefetching (a topic we cover extensively in
Chapter 5).

Much of this chapter focuses on techniques for reducing the impact of long
remote communication latency. For example, Sections 4.2 and 4.3 discuss how
caching can be used to reduce remote access frequency, while maintaining a
coherent view of memory. Section 4.5 discusses synchronization, which, because
it inherently involves interprocessor communication and also can limit parallel-
ism, is a major potential bottleneck. Section 4.6 covers latency-hiding techniques
and memory consistency models for shared memory. In Appendix 1, we focus pri-
marily on large-scale multiprocessors, which are used predominantly for scien-
tific work. In that appendix. we examine the nature of such applications and the
challenges of achieving speedup with dozens to hundreds of processors.

Understanding a modern shared-memory multiprocessor requires a good
understanding of the basics of caches. Readers who have covered this topic in
our introductory book, Computer Organization and Design: The Hardware/
Software Interface, will be well-prepared. If topics such as write-back caches
and multilevel caches are unfamiliar to you, you should take the time to review
Appendix C.
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Symmetric Shared-Memory Architectures

The use of large, multilevel caches can substantially reduce the memory band-
width demands of a processor. If the main memory bandwidth demands of a sin-
gle processor are reduced, multiple processors may be able to share the same
memory. Starting in the 1980s, this observation, combined with the emerging
dominance of the microprocessor, motivated many designers to create small-
scale multiprocessors where several processors shared a single physical memory
connected by a shared bus. Because of the small size of the processors and the
significant reduction in the requirements for bus bandwidth achieved by large
caches, such symmetric multiprocessors were extremely cost-effective, provided
that a sufficient amount of memory bandwidth existed. Early designs of such
multiprocessors were able to place the processor and cache subsystem on a
board, which plugged into the bus backplane. Subsequent versions of such
designs in the 1990s could achieve higher densities with two to four processors
per board, and often used multiple buses and interleaved memories to support the
faster processors.

IBM introduced the first on-chip multiprocessor for the general-purpose com-
puting market in 2000. AMD and Intel followed with two-processor versions for
the server market in 2005, and Sun introduced T1, an eight-processor multicore
in 2006. Section 4.8 looks at the design and performance of T1. The earlier
Figure 4.1 on page 200 shows a simple diagram of such a multiprocessor. With
the more recent, higher-performance processors, the memory demands have out-
stripped the capability of reasonable buses. As a result, most recent designs use a
small-scale switch or a limited point-to-point network.

Symmetric shared-memory machines usually support the caching of both
shared and private data. Private data are used by a single processor, while shared
data are used by multiple processors, essentially providing communication
among the processors through reads and writes of the shared data. When a private
item is cached, its location is migrated to the cache, reducing the average access
time as well as the memory bandwidth required. Since no other processor uses
the data, the program behavior is identical to that in a uniprocessor. When shared
data are cached, the shared value may be replicated in multiple caches. In addi-
tion to the reduction in access latency and required memory bandwidth, this rep-
lication also provides a reduction in contention that may exist for shared data
items that are being read by multiple processors simultaneously. Caching of
shared data, however, introduces a new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

Unfortunately, caching shared data introduces a new problem because the view of
memory held by two different processors is through their individual caches,
which, without any additional precautions, could end up seeing two different val-
ues. Figure 4.3 illustrates the problem and shows how two different processors
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Memory
Cache contents  Cache contents contents for
Time Event forCPUA forCPUB location X
0 |
1 CPU A reads X 1 1
2 CPU B reads X 1 1 |
3 CPU A stores 0 into X 0 1 0

Figure 4.3 The cache coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains
the variable and that X has the value 1.We also assume a write-through cache; a write-
back cache adds some additional but similar complications. After the value of X has
been written by A, A’s cache and the memory both contain the new value, but B's cache
does not, and if B reads the value of X, it will receive 1!

can have two different values for the same location. This difficulty is generally
referred to as the cache coherence problem.

Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This definition,
although intuitively appealing, is vague and simplistic; the reality is much more
complex. This simple definition contains two different aspects of memory system
behavior, both of which are critical to writing correct shared-memory programs.
The first aspect, called coherence, defines what values can be returned by a read.
The second aspect, called consistency, determines when a written value will be
returned by a read. Let’s look at coherence first.

A memory system is coherent if

1. Aread by a processor P to a location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read by
P, always returns the value written by P.

2. Aread by a processor to location X that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if the values 1 and then 2 are written to a location, processors
can never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property
to be true even in uniprocessors. The second property defines the notion of what
it means to have a coherent view of memory: If a processor could continuously
read an old data value, we would clearly say that memory was incoherent.

The need for write serialization is more subtle, but equally important. Sup-
pose we did not serialize writes, and processor P1 writes location X followed by
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P2 writing location X. Serializing the writes ensures that every processor will see
the write done by P2 at some point. If we did not serialize the writes, it might be
the case that some processor could see the write of P2 first and then see the write
of P1, maintaining the value written by P1 indefinitely. The simplest way to avoid
such difficulties is to ensure that all writes to the same location are seen in the
same order; this property is called write serialization.

Although the three properties just described are sufficient to ensure coher-
ence, the question of when a written value will be seen is also important. To see
why, observe that we cannot require that a read of X instantaneously see the value
written for X by some other processor. If, for example, a write of X on one pro-
cessor precedes a read of X on another processor by a very small time, it may be
impossible to ensure that the read returns the value of the data written, since the
written data may not even have left the processor at that point. The issue of
‘exactly when a written value must be seen by a reader is defined by a memory
consistency model—a topic discussed in Section 4.6.

Coherence and consistency are complementary: Coherence defines the
behavior of reads and writes to the same memory location, while consistency
defines the behavior of reads and writes with respect to accesses to other memory
locations. For now, make the following two assumptions. First, a write does not
complete (and allow the next write to occur) until all processors have seen the
effect of that write. Second, the processor does not change the order of any write
with respect to any other memory access. These two conditions mean that if a
processor writes location A followed by location B, any processor that sees the
new value of B must also see the new value of A. These restrictions allow the pro-
cessor to reorder reads, but forces the processor to finish a write in program order.
We will rely on this assumption until we reach Section 4.6, where we will see
exactly the implications of this definition, as well as the alternatives.

Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, although similar in origin,
has different characteristics that affect the appropriate solution. Unlike /O,
where multiple data copies are a rare event—one to be avoided whenever possi-
ble—a program running on multiple processors will normally have copies of the
same data in several caches. In a coherent multiprocessor, the caches provide
both migration and replication of shared data items.

Coherent caches provide migration, since a data item can be moved to a local
cache and used there in a transparent fashion. This migration reduces both the
latency to access a shared data item that is allocated remotely and the bandwidth
demand on the shared memory.

Coherent caches also provide replication for shared data that are being
simultaneously read, since the caches make a copy of the data item in the local
cache. Replication reduces both latency of access and contention for a read
shared data item. Supporting this migration and replication is critical to perfor-
mance in accessing shared data. Thus. rather than trying to solve the problem by
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avoiding it in software, small-scale multiprocessors adopt a hardware solution by
introducing a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache
coherence protocols. Key to implementing a cache coherence protocol is tracking
the state of any sharing of a data block. There are two classes of protocols, which
use different techniques to track the sharing status, in use:

m  Directory based—The sharing status of a block of physical memory is kept in
just one location, called the directory; we focus on this approach in Section
4.4, when we discuss scalable shared-memory architecture. Directory-based
coherence has slightly higher implementation overhead than snooping, but it
can scale to larger processor counts. The Sun T1 design, the topic of Section
4.8, uses directories, albeit with a central physical memory.

m  Snooping—Every cache that has a copy of the data from a block of physical
memory also has a copy of the sharing status of the block, but no centralized
state is kept. The caches are all accessible via some broadcast medium (a bus
or switch), and all cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that is requested on a
bus or switch access. We focus on this approach in this section.

Snooping protocols became popular with multiprocessors using microproces-
sors and caches attached to a single shared memory because these protocols can
use a preexisting physical connection—the bus to memory—to interrogate the
status of the caches. In the following section we explain snoop-based cache
coherence as implemented with a shared bus, but any communication medium
that broadcasts cache misses to all processors can be used to implement a snoop-
ing-based coherence scheme. This broadcasting to all caches is what makes
snooping protocols simple to implement but also limits their scalability.

Snooping Protocols

There are two ways to maintain the coherence requirement described in the prior
subsection. One method is to ensure that a processor has exclusive access to a
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the most
common protocol, both for snooping and for directory schemes. Exclusive access
ensures that no other readable or writable copies of an item exist when the write
occurs: All other cached copies of the item are invalidated.

Figure 4.4 shows an example of an invalidation protocol for a snooping bus
with write-back caches in action. To see how this protocol ensures coherence, con-
sider a write followed by a read by another processor: Since the write requires
exclusive access, any copy held by the reading processor must be invalidated
(hence the protocol name). Thus, when the read occurs, it misses in the cache and
is forced to fetch a new copy of the data. For a write, we require that the writing
processor have exclusive access, preventing any other processor from being able
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Contents of

Contentsof  Contents of memory

Processor activity Bus activity CPU A’s cache CPU B’s cache location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache muss for X 0 0 0
CPU A writes a 1 to X Invalidation for X 1 0
CPU B reads X Cache miss for X 1 1 1

Figure 4.4 An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches. We assume that neither cache initially
holds X and that the value of X in memory is 0.The CPU and memory contents show the
value after the processor and bus activity have both completed. A blank indicates no
activity or no copy cached. When the second miss by B occurs, CPU A responds with the
value canceling the response from memory. In addition, both the contents of B's cache
and the memory contents of X are updated. This update of memory, which occurs when
a block becomes shared, simplifies the protocol, but it is possible to track the owner-
ship and force the write back only if the block is replaced. This requires the introduction
of an additional state called “owner,” which indicates that a block may be shared, but
the owning processor is responsible for updating any other processors and memory
when it changes the block or replaces it.

to write simultaneously. If two processors do attempt to write the same data simul-
taneously, one of them wins the race (we’ll see how we decide who wins shortly),
causing the other processor’s copy to be invalidated. For the other processor to
complete its write, it must obtain a new copy of the data, which must now contain
the updated value. Therefore, this protocol enforces write serialization.

The alternative to an invalidate protocol is to update all the cached copies of a
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. Because a write update protocol must broadcast all
writes to shared cache lines, it consumes considerably more bandwidth. For this
reason, all recent multiprocessors have opted to implement a write invalidate pro-
tocol, and we will focus only on invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a small-scale multiprocessor is
the use of the bus, or another broadcast medium, to perform invalidates. To per-
form an invalidate, the processor simply acquires bus access and broadcasts the
address to be invalidated on the bus. All processors continuously snoop on the
bus, watching the addresses. The processors check whether the address on the bus
is in their cache. If so, the corresponding data in the cache are invalidated.

When a write to a block that is shared occurs, the writing processor must
acquire bus access to broadcast its invalidation. If two processors attempt to write
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shared blocks at the same time, their attempts to broadcast an invalidate operation
will be serialized when they arbitrate for the bus. The first processor to obtain bus
access will cause any other copies of the block it is writing to be invalidated. If
the processors were attempting to write the same block, the serialization enforced
by the bus also serializes their writes. One implication of this scheme is that a
write to a shared data item cannot actually complete until it obtains bus access.
All coherence schemes require some method of serializing accesses to the same
cache block, either by serializing access to the communication medium or
another shared structure.

In addition to invalidating outstanding copies of a cache block that is being
written into, we also need to locate a data item when a cache miss occurs. In &
write-through cache, it is easy to find the recent value of a data item, since all
written data are always sent to the memory, from which the most recent value of
a data item can always be fetched. (Write buffers can lead to some additional
complexities, which are discussed in the next chapter.) In a design with adequate
memory bandwidth to support the write traffic from the processors, using write
through simplifies the implementation of cache coherence.

For a write-back cache, the problem of finding the most recent data value is
harder, since the most recent value of a data item can be in a cache rather than in
memory. Happily, write-back caches can use the same snooping scheme both for
cache misses and for writes: Each processor snoops every address placed on the
bus. If a processor finds that it has a dirty copy of the requested cache block, it
provides that cache block in response to the read request and causes the memory
access to be aborted. The additional complexity comes from having to retrieve
the cache block from a processor’s cache, which can often take longer than
retrieving it from the shared memory if the processors are in separate chips. Since
write-back caches generate lower requirements for memory bandwidth, they can
support larger numbers of faster processors and have been the approach chosen in
most multiprocessors, despite the additional complexity of maintaining coher-
ence. Therefore, we will examine the implementation of coherence with write-
back caches.

The normal cache tags can be used to implement the process of snooping, and
the valid bit for each block makes invalidation easy to implement. Read misses,
whether generated by an invalidation or by some other event, are also straightfor-
ward since they simply rely on the snooping capability. For writes we’d like to
know whether any other copies of the block are cached because, if there are no
other cached copies, then the write need not be placed on the bus in a write-back
cache. Not sending the write reduces both the time taken by the write and the
required bandwidth.

To track whether or not a cache block is shared, we can add an extra state bit
associated with each cache block, just as we have a valid bit and a dirty bit. By
adding a bit indicating whether the block is shared, we can decide whether a
write must generate an invalidate. When a write to a block in the shared state
occurs, the cache generates an invalidation on the bus and marks the block as
exclusive. No further invalidations will be sent by that processor for that block.
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The processor with the sole copy of a cache block is normally called the owner of
the cache block.

When an invalidation is sent, the state of the owner’s cache block is changed
from shared to unshared (or exclusive). If another processor later requests this
cache block, the state must be made shared again. Since our snooping cache also
sees any misses, it knows when the exclusive cache block has been requested by
another processor and the state should be made shared.

Every bus transaction must check the cache-address tags, which could poten-
tially interfere with processor cache accesses. One way to reduce this interference
is to duplicate the tags. The interference can also be reduced in a multilevel cache
by directing the snoop requests to the L2 cache, which the processor uses only
when it has a miss in the L1 cache. For this scheme to work, every entry in the L1
cache must be present in the L2 cache, a property called the inclusion property. If
the snoop gets a hit in the L2 cache, then it must arbitrate for the L1 cache to update
the state and possibly retrieve the data, which usually requires a stall of the proces-
sor. Sometimes it may even be useful to duplicate the tags of the secondary cache to
further decrease contention between the processor and the snooping activity. We
discuss the inclusion property in more detail in the next chapter.

An Example Protocol

A snooping coherence protocol is usually implemented by incorporating a finite-
state controller in each node. This controller responds to requests from the pro-
cessor and from the bus (or other broadcast medium), changing the state of the
selected cache block, as well as using the bus to access data or to invalidate it.
Logically, you can think of a separate controller being associated with each
block: that is, snooping operations or cache requests for different blocks can pro-
ceed independently. In actual implementations, a single controller allows multi-
ple operations to distinct blocks to proceed in interleaved fashion (that is, one
operation may be initiated before another is completed, even though only one
cache access or one bus access is allowed at a time). Also, remember that,
although we refer to a bus in the following description, any interconnection net-
work that supports a broadcast to all the coherence controllers and their associ-
ated caches can be used to implement snooping.

The simple protocol we consider has three states: invalid, shared, and modi-
fied. The shared state indicates that the block is potentially shared, while the
modified state indicates that the block has been updated in the cache; note that
the modified state implies that the block is exclusive. Figure 4.5 shows the
requests generated by the processor-cache module in a node (in the top half of the
table) as well as those coming from the bus (in the bottom half of the table). This
protocol is for a write-back cache but is easily changed to work for a write-
through cache by reinterpreting the modified state as an exclusive state and
updating the cache on writes in the normal fashion for a write-through cache. The
most common extension of this basic protocol is the addition of an exclusive
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state, which describes a block that is unmodified but held in only one cache; the
caption of Figure 4.5 describes this state and its addition in more detail.

When an invalidate or a write miss is placed on the bus, any processors with
copies of the cache block invalidate it. For a write-through cache, the data for a
write miss can always be retrieved from the memory. For a write miss in a write-
back cache, if the block is exclusive in just one cache, that cache also writes back
the block; otherwise, the data can be read from memory.

Figure 4.6 shows a finite-state transition diagram for a single cache block
using a write invalidation protocol and a write-back cache. For simplicity, the
three states of the protocol are duplicated to represent transitions based on pro-
cessor requests (on the left, which corresponds to the top half of the table in Fig-
ure 4.5), as opposed to transitions based on bus requests (on the right, which
corresponds to the bottom half of the table in Figure 4.5). Boldface type is use
to distinguish the bus actions, as opposed to the conditions on which a state tran-
sition depends. The state in each node represents the state of the selected cache
block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniprocessor
cache, where they would correspond to the invalid, valid (and clean), and dirty
states. Most of the state changes indicated by arcs in the left half of Figure 4.6
would be needed in a write-back uniprocessor cache, with the exception being
the invalidate on a write hit to a shared block. The state changes represented by
the arcs in the right half of Figure 4.6 are needed only for coherence and would
not appear at all in a uniprocessor cache controller.

As mentioned earlier, there is only one finite-state machine per cache, with
stimuli coming either from the attached processor or from the bus. Figure 4.7
shows how the state transitions in the right half of Figure 4.6 are combined
with those in the left half of the figure to form a single state diagram for each
cache block.

To understand why this protocol works, observe that any valid cache block
is either in the shared state in one or more caches or in the exclusive state in
exactly one cache. Any transition to the exclusive state (which is required for a
processor to write to the block) requires an invalidate or write miss to be placed
on the bus, causing all caches to make the block invalid. In addition, if some
other cache had the block in exclusive state, that cache generates a write back.
which supplies the block containing the desired address. Finally, if a read miss
occurs on the bus to a block in the exclusive state, the cache with the exclusive
copy changes its state to shared.

The actions in gray in Figure 4.7, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other property
that is preserved in this protocol, and in most other protocols, is that any memory
block in the shared state is always up to date in the memory, which simplifies the
implementation.

Although our simple cache protocol is correct, it omits a number of complica-
tions that make the implementation much trickier. The most important of these is
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State of
addressed Type of
Fequest Source  cacheblock cacheaction Functionand explanation

Read hit  processor shared or normal hit Read data in cache.
modified
‘ead miss processor invalid normal miss  Place read miss on bus.
Read miss processor shared replacement  Address conflict miss: place read miss on bus.
Read miss processor modified replacement  Address conflict miss: write back block, then place read miss on
bus.
Write hit ~ processor modified normal hit Write data in cache.
Write hit  processor shared coherence Place invalidate on bus. These operations are often called

upgrade or ownership misses, since they do not fetch the data but
only change the state.

Write miss processor  invalid normal miss  Place write miss on bus.

Write miss processor shared replacement  Address conflict miss: place write miss on bus.

Write miss processor modified replacement  Address conflict miss: write back block, then place write miss on
bus.

Read miss bus shared no action Allow memory to service read miss.

Read miss bus modified coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate  bus shared coherence Attempt to write shared block: invalidate the block.

Write miss bus shared coherence Attempt to write block that is shared; invalidate the cache block.

Write miss bus modified coherence Attempt to write block that is exclusive elsewhere: write back the

cache block and make its state invalid.

Figure 4.5 The cache coherence mechanism receives requests from both the processor and the bus and
responds to these based on the type of request, whether it hits or misses in the cache, and the state of the cache
block specified in the request.The fourth column describes the type of cache action as normal hit or miss (the same
as a uniprocessor cache would see), replacement (a uniprocessor cache replacement miss), or coherence (required to
maintain cache coherence); a normal or replacement action may cause a coherence action depending on the state of
the block in other caches. For read, misses, write misses, or invalidates snooped from the bus, an action is required
only if the read or write addresses match a block in the cache and the block is valid. Some protocols also introduce a
state to designate when a block is exclusively in one cache but has not yet been written. This state can arise if a write
access is broken into two pieces: getting the block exclusively in one cache and then subsequently updating it; in
such a protocol this “exclusive unmodified state”is transient, ending as soon as the write is completed. Other proto-
cols use and maintain an exclusive state for an unmodified block. In a snooping protocol, this state can be entered
when a processor reads a block that is not resident in any other cache. Because all subsequent accesses are snooped,
it is possible to maintain the accuracy of this state. In particular, if another processor issues a read miss, the state is
changed from exclusive to shared. The advantage of adding this state is that a subsequent write to a block in the
exclusive state by the same processor need not acquire bus access or generate an invalidate, since the block is
known to be exclusively in this cache; the processor merely changes the state to modified. This state is easily added
by using the bit that encodes the coherent state as an exclusive state and using the dirty bit to indicate that a bock is
modified. The popular MESI protocol, which is named for the four states it includes (modified, exclusive, shared, and
invalid), uses this structure. The MOESI protocol introduces another extension: the “owned” state, as described in the
caption of Figure 4.4.
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Figure 4.6 A write invalidate, cache coherence protocol for a write-back cache showing the states and state tran-
sitions for each block in the cache. The cache states are shown in circles, with any access permitted by the processor
without a state transition shown in parentheses under the name of the state. The stimulus causing a state change is
shown on the transition arcs in regular type, and any bus actions generated as part of the state transition are shown
on the transition arc in bold. The stimulus actions apply to a block in the cache, not to a specific address in the cache.
Hence, a read miss to a block in the shared state is a miss for that cache block but for a different address. The left side
of the diagram shows state transitions based on actions of the processor associated with this cache; the right side
shows transitions based on operations on the bus. A read miss in the exclusive or shared state and a write miss in the
exclusive state occur when the address requested by the processor does not match the address in the cache block.
Such a miss is a standard cache replacement miss. An attempt to write a block in the shared state generates an inval-
idate. Whenever a bus transaction occurs, all caches that contain the cache block specified in the bus transaction
take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on a read
miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined.
In practice, there are many subtle variations on invalidate protocols, including the introduction of the exclusive
unmodified state, as to whether a processor or memory provides data on a miss.

that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the pro-
tocol described assumes that write misses can be detected, acquire the bus, and
receive a response as a single atomic action. In reality this is not true. Similarly, if
we used a switch, as all recent multiprocessors do, then even read misses would
also not be atomic.

Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. We will explore how
these protocols are implemented without a bus shortly.
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Figure 4.7 Cache coherence state diagram with the state transitions induced by the
local processor shown in black and by the bus activities shown in gray. As in
Figure 4.6, the activities on a transition are shown in bold.

Constructing small-scale (two to four processors) multiprocessors has
become very easy. For example, the Intel Pentium 4 Xeon and AMD Opteron
processors are designed for use in cache-coherent multiprocessors and have an
external interface that supports snooping and allows two to four processors to be
directly connected. They also have larger on-chip caches to reduce bus utiliza-
tion. In the case of the Opteron processors, the support for interconnecting multi-
ple processors is integrated onto the processor chip, as are the memory interfaces.
In the case of the Intel design, a two-processor system can be built with only a
few additional external chips to interface with the memory system and L/O.
Although these designs cannot be easily scaled to larger processor counts, they
offer an extremely cost-effective solution for two to four processors.

The next section examines the performance of these protocols for our parallel
and multiprogrammed workloads; the value of these extensions to a basic proto-
col will be clear when we examine the performance. But before we do that, let’s
take a brief look at the limitations on the use of a symmetric memory structure
and a snooping coherence scheme.
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Limitations in Symmetric Shared-Memory Multiprocessors and
Snooping Protocols

As the number of processors in a multiprocessor grows, or as the memory
demands of each processor grow, any centralized resource in the system can
become a bottleneck. In the simple case of a bus-based multiprocessor, the bus
must support both the coherence traffic as well as normal memory traffic arising
from the caches. Likewise, if there is a single memory unit, it must accommodate
all processor requests. As processors have increased in speed in the last few
years, the number of processors that can be supported on a single bus or by using
a single physical memory unit has fallen.

How can a designer increase the memory bandwidth to support either more or
faster processors? To increase the communication bandwidth between processors
and memory, designers have used multiple buses as well as interconnection net-
works, such as crossbars or small point-to-point networks. In such designs, the
memory system can be configured into multiple physical banks, so as to boost the
effective memory bandwidth while retaining uniform access time to memory.
Figure 4.8 shows this approach, which represents a midpoint between the two
approaches we discussed in the beginning of the chapter: centralized shared
memory and distributed shared memory.

The AMD Opteron represents another intermediate point in the spectrum
between a snoopy and a directory protocol. Memory is directly connected to each
dual-core processor chip, and up to four processor chips, eight cores in total, can
be connected. The Opteron implements its coherence protocol using the point-to-
point links to broadcast up to three other chips. Because the interprocessor links
are not shared, the only way a processor can know when an invalid operation has

< Processor Processor { Processor < Processor

One or
more levels
of cache

One or
more levels

One or One or
more levels more levels
of cache of cache

of cache

/O system

Memory Memory Memory Memory

Figure 4.8 A muitiprocessor with uniform memory access using an interconnection
network rather than a bus.
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completed is by an explicit acknowledgment. Thus, the coherence protocol uses a
broadcast to find potentially shared copies, like a snoopy protocol, but uses the
acknowledgments to order operations, like a directory protocol. Interestingly, the
remote memory latency and local memory latency are not dramatically different,
allowing the operating system to treat an Opteron multiprocessor as having uni-
form memory access.

A snoopy cache coherence protocol can be used without a centralized bus, but
still requires that a broadcast be done to snoop the individual caches on every
miss to a potentially shared cache block. This cache coherence traffic creates
another limit on the scale and the speed of the processors. Because coherence
traffic is unaffected by larger caches, faster processors will inevitably overwhelm
the network and the ability of each cache to respond to snoop requests from all
the other caches. In Section 4.4, we examine directory-based protocols, which
eliminate the need for broadcast to all caches on a miss. As processor speeds and
the number of cores per processor increase, more designers are likely to opt for
such protocols to avoid the broadcast limit of a snoopy protocol.

Implementing Snoopy Cache Coherence

The devil is in the details.
Classic proverb

When we wrote the first edition of this book in 1990, our final “Putting It All
Together” was a 30-processor, single bus multiprocessor using snoop-based
coherence; the bus had a capacity of just over 50 MB/sec, which would not be
enough bus bandwidth to support even one Pentium 4 in 2006! When we wrote
the second edition of this book in 1995, the first cache coherence multiprocessors
with more than a single bus had recently appeared, and we added an appendix
describing the implementation of snooping in a system with multiple buses. In
2006, every multiprocessor system with more than two processors uses an inter-
connect other than a single bus, and designers must face the challenge of imple-
menting snooping without the simplification of a bus to serialize events.

As we said earlier, the major complication in actually implementing the
snooping coherence protocol we have described is that write and upgrade misses
are not atomic in any recent multiprocessor. The steps of detecting a write or up-
grade miss, communicating with the other processors and memory, getting the
most recent value for a write miss and ensuring that any invalidates are pro-
cessed, and updating the cache cannot be done as if they took a single cycle.

In a simple single-bus system, these steps can be made effectively atomic by
arbitrating for the bus first (before changing the cache state) and not releasing the
bus until all actions are complete. How can the processor know when all the in-
validates are complete? In most bus-based multiprocessors a single line is used to
signal when all necessary invalidates have been received and are being processed.
Following that signal, the processor that generated the miss can release the bus,
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knowing that any required actions will be completed before any activity related to
the next miss. By holding the bus exclusively during these steps, the processor cf-
fectively makes the individual steps atomic.

In a system without a bus, we must find some other method of making the
steps in a miss atomic. In particular, we must ensure that two processors that at-
tempt to write the same block at the same time, a situation which is called a race,
are strictly ordered: one write is processed and precedes before the next is begun.
It does not matter which of two writes in a race wins the race, just that there be
only a single winner whose coherence actions are completed first. In a snoopy
system ensuring that a race has only one winner is ensured by using broadcast for
all misses as well as some basic properties of the interconnection network. These
properties, together with the ability to restart the miss handling of the loser in a
race, are the keys to implementing snoopy cache coherence without a bus. We ex-
plain the details in Appendix H.

Performance of Symmetric Shared-Memory
Multiprocessors

In a multiprocessor using a snoopy coherence protocol, several different phenom-
ena combine to determine performance. In particular, the overall cache perfor-
mance is a combination of the behavior of uniprocessor cache miss traffic and the
traffic caused by communication, which results in invalidations and subsequent
cache misses. Changing the processor count, cache size, and block size can affect
these two components of the miss rate in different ways, leading to overall sys-
tem behavior that is a combination of the two effects.

Appendix C breaks the uniprocessor miss rate into the three C’s classification
(capacity, compulsory, and conflict) and provides insight into both application
behavior and potential improvements to the cache design. Similarly, the misses
that arise from interprocessor communication, which are often called coherence
misses, can be broken into two separate sources.

The first source is the so-called true sharing misses that arise from the com-
munication of data through the cache coherence mechanism. In an invalidation-
based protocol, the first write by a processor to a shared cache block causes an
invalidation to establish ownership of that block. Additionally, when another pro-
cessor attempts to read a modified word in that cache block, a miss occurs and the
resultant block is transferred. Both these misses are classified as true sharing
misses since they directly arise from the sharing of data among processors.

The second effect, called false sharing, arises from the use of an invalidation-
based coherence algorithm with a single valid bit per cache block. False sharing
occurs when a block is invalidated (and a subsequent reference causes a miss)
because some word in the block, other than the one being read, is written into. If
the word written into is actually used by the processor that received the invali-
date, then the reference was a true sharing reference and would have caused a
miss independent of the block size. If, however, the word being written and the
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word read are different and the invalidation does not cause a new value to be
communicated, but only causes an extra cache miss, then it is a false sharing
miss. In a false sharing miss, the block is shared, but no word in the cache is actu-
ally shared, and the miss would not occur if the block size were a single word.
The following example makes the sharing patterns clear.

Example

Answer

Assume that words x1 and x2 are in the same cache block, which is in the shared
state in the caches of both P1 and P2. Assuming the following sequence of
events, identify each miss as a true sharing miss, a false sharing miss, or a hit.
Any miss that would occur if the block size were one word is designated a true
sharing miss.

Time P1 P2

1 Write x1

2 Read x2
3 Write x1

4 Write x2
5 Read x2

Here are classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs to be
invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the write of x1
in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is marked
shared due to the read in P2, but P2 did not read x1. The cache block contain-
ing x1 will be in the shared state after the read by P2; a write miss is required
to obtain exclusive access to the block. In some protocols this will be handled
as an upgrade request, which generates a bus invalidate, but does not transfer
the cache block.

4. This event is a false sharing miss for the same reason as step 3.

This event is a true sharing miss, since the value being read was written by P2.

Although we will see the effects of true and false sharing misses in commer-
cial workloads, the role of coherence misses is more significant for tightly cou-
pled applications that share significant amounts of user data. We examine their
effects in detail in Appendix H, when we consider the performance of a paraliel
scientific workload.
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A Commercial Workload

In this section, we examine the memory system behavior of a four-processor
shared-memory multiprocessor. The results were collected either on an Alpha-
Server 4100 or using a configurable simulator modeled after the AlphaServer
4100. Each processor in the AlphaServer 4100 is an Alpha 21164, which issues
up to four instructions per clock and runs at 300 MHz. Although the clock rate of
the Alpha processor in this system is considerably slower than processors in
recent systems, the basic structure of the system, consisting of a four-issue pro-
cessor and a three-level cache hierarchy, is comparable to many recent systems.
In particular, each processor has a three-level cache hierarchy:

m LI consists of a pair of 8 KB direct-mapped on-chip caches, one for instruc-
tion and one for data. The block size is 32 bytes, and the data cache is write
through to L2, using a write buffer.

m L2 is a 96 KB on-chip unified three-way set associative cache with a 32-byte
block size, using write back.

w L3 is an off-chip, combined, direct-mapped 2 MB cache with 64-byte blocks
also using write back.

The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles, and to main
memory it is 80 clock cycles (typical without contention). Cache-to-cache trans-
fers, which occur on a miss to an exclusive block held in another cache, require
125 clock cycles. Although these miss penalties are smaller than today’s higher
clock systems would experience, the caches are also smaller, meaning that a more
recent system would likely have lower miss rates but higher miss penalties.

The workload used for this study consists of three applications:

1. An online transaction-processing workload (OLTP) modeled after TPC-B
(which has similar memory behavior to its newer cousin TPC-C) and using
Oracle 7.3.2 as the underlying database. The workload consists of a set of cli-
ent processes that generate requests and a set of servers that handle them. The
server processes consume 85% of the user time, with the remaining going to
the clients. Although the I/O latency is hidden by careful tuning and enough
requests to keep the CPU busy, the server processes typically block for I/O
after about 25,000 instructions.

2. A decision support system (DSS) workload based on TPC-D and also using
Oracle 7.3.2 as the underlying database. The workload includes only 6 of the
17 read queries in TPC-D, although the 6 queries examined in the benchmark
span the range of activities in the entire benchmark. To hide the I/O latency.
parallelism is exploited both within queries, where parallelism is detected
during a query formulation process, and across queries. Blocking calls are
much less frequent than in the OLTP benchmark; the 6 queries average about
1.5 million instructions before blocking.
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Benchmark % time user mode % time kernel % time CPU idle
OLTP 71 18 11

DSS (average across 87 4 9

all queries)

AltaVista > 98 <1 <1

Figure 4.9 The distribution of execution time in the commercial workloads. The
OLTP benchmark has the largest fraction of both OS time and CPU idle time (which is
1/0 wait time). The DSS benchmark shows much less OS time, since it does less 1/0,
but still more than 9% idle time.The extensive tuning of the AltaVista search engine is
clear in these measurements. The data for this workload were collected by Barroso et
al.[1998] on a four-processor AlphaServer 4100.

3. A Web index search (AltaVista) benchmark based on a search of a memory-
mapped version of the AltaVista database (200 GB). The inner loop is heavily
optimized. Because the search structure is static, little synchronization is
needed among the threads.

The percentages of time spent in user mode, in the kernel, and in the idle loop
are shown in Figure 4.9. The frequency of I/O increases both the kernel time and
the idle time (see the OLTP entry, which has the largest I/O-to-computation
ratio). AltaVista, which maps the entire search database into memory and has
been extensively tuned, shows the least kernel or idle time.

Performance Measurements of the Commercial Workload

We start by looking at the overall CPU execution for these benchmarks on the
four-processor system; as discussed on page 220, these benchmarks include sub-
stantial I/O time, which is ignored in the CPU time measurements. We group the
six DSS queries as a single benchmark, reporting the average behavior. The
effective CPI varies widely for these benchmarks, from a CPI of 1.3 for the
AltaVista Web search, to an average CPI of 1.6 for the DSS workload, to 7.0 for
the OLTP workload. Figure 4.10 shows how the execution time breaks down into
instruction execution, cache and memory system access time, and other stalls
(which are primarily pipeline resource stalls, but also include TLB and branch
mispredict stalls). Although the performance of the DSS and AltaVista workloads
is reasonable, the performance of the OLTP workload is very poor, due to a poor
performance of the memory hierarchy.

Since the OLTP workload demands the most from the memory system with
large numbers of expensive L3 misses, we focus on examining the impact of L3
cache size, processor count, and block size on the OLTP benchmark. Figure 4.11
shows the effect of increasing the cache size, using two-way set associative cach-
es, which reduces the large number of conflict misses. The execution time is im-
proved as the L3 cache grows due to the reduction in L3 misses. Surprisingly,
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Figure 4.10 The execution time breakdown for the three programs (OLTP, DSS, and
AltaVista) in the commercial workload. The DSS numbers are the average across six
different queries. The CP! varies widely from a low of 1.3 for AltaVista, to 1.61 for the DSS
queries, to 7.0 for OLTP. (Individually, the DSS queries show a CPI range of 1.3 to 1.9.)
Other stalls includes resource stalls (implemented with replay traps on the 21164),
branch mispredict, memory barrier, and TLB misses. For these benchmarks, resource-
based pipeline stalls are the dominant factor. These data combine the behavior of user
and kernel accesses. Only OLTP has a significant fraction of kernel accesses, and the ker-
nel accesses tend to be better behaved than the user accesses! All the measurements
shown in this section were collected by Barroso, Gharachorloo, and Bugnion [1998).

almost all of the gain occurs in going from 1 to 2 MB, with little additional gain
beyond that, despite the fact that cache misses are still a cause of significant per-
formance loss with 2 MB and 4 MB caches. The question is, Why?

To better understand the answer to this question, we need to determine what
factors contribute to the L3 miss rate and how they change as the L3 cache grows.
Figure 4.12 shows this data, displaying the number of memory access cycles con-
tributed per instruction from five sources. The two largest sources of L3 memory
access cycles with a | MB L3 are instruction and capacity/conflict misses. With a
larger 1.3 these two sources shrink to be minor contributors. Unfortunately, the
compulsory, false sharing, and true sharing misses are unaffected by a larger L3.
Thus, at 4 MB and 8 MB, the true sharing misses generate the dominant fraction
of the misses; the lack of change in true sharing misses leads to the limited reduc-
tions in the overall miss rate when increasing the L3 cache size beyond 2 MB.
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Figure 4.11 The relative performance of the OLTP workload as the size of the L3
cache, which is set as two-way set associative, grows from 1 MB to 8 MB.The idle time
also grows as cache size is increased, reducing some of the performance gains. This
growth occurs because, with fewer memory system stalls, more server processes are
needed to cover the I/0 latency.The workload could be retuned to increase the compu-
tation/communication balance, holding the idie time in check

Increasing the cache size eliminates most of the uniprocessor misses, while
leaving the multiprocessor misses untouched. How does increasing the processor
count affect different types of misses”? Figure 4.13 shows this data assuming a
base configuration with a 2 MB. two-way set associative L3 cache. As we might
expect, the increase in the true sharing miss rate, which is not compensated for by
any decrease in the uniprocessor misses, leads to an overall increase in the mem-
ory access cycles per instruciion.

The final question we examine is whether increasing the block size—which
should decrease the instruction and cold miss rate and, within limits, also reduce
the capacity/conflict miss rate and possibly the true sharing miss rate—is helpful
for this workload. Figure 4.14 shows the number of misses per 1000 instructions
as the block size is increased from 32 to 256. Increasing the block size from 32 to
256 affects four of the miss rate components:

m The true sharing miss rate decreases by more than a factor of 2, indicating
some locality in the rrue sharing patterns.
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Figure 4.12 The contributing causes of memory access cycles shift as the cache size
is increased.The L3 cache is simulated as two-way set associative.

m The compulsory miss rate significantly decreases, as we would expect.

m  The conflict/capacity misses show a small decrease (a factor of 1.26 com-
pared to a factor of 8 increase in block size), indicating that the spatial local-
ity is not high in the uniprocessor misses that occur with L3 caches larger
than 2 MB.

m  The false sharing miss rate, although small in absolute terms, nearly doubles.

The lack of a significant effect on the instruction miss rate is startling. If
there were an instruction-only cache with this behavior, we would conclude
that the spatial locality is very poor. In the case of a mixed L2 cache, other
effects such as instruction-data conflicts may also contribute to the high
instruction cache miss rate for larger blocks. Other studies have documented
the low spatial locality in the instruction stream of large database and OLTP
workloads, which have lots of short basic blocks and special-purpose code
sequences. Nonetheless, increasing the block size of the third-level cache to
128 or possibly 256 bytes seems appropriate.
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Figure 4.13 The contribution to memory access cycles increases as processor count
increases primarily due to increased true sharing. The compulsory misses slightly
increase since each processor must now handle more compulsory misses.

A Multiprogramming and OS Workload

Our next study is a multiprogrammed workload consisting of both user activity
and OS activity. The workload used is two independent copies of the compile
phases of the Andrew benchmark. a benchmark that emulates a software develop-
ment environment. The compile phase consists of a parallel make using eight
processors. The workload runs for 5.24 seconds on eight processors, creating 203
processes and performing 787 disk requests on three different file systems. The
workload is run with 128 MB of memory, and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, which
involves substantial compute activity; installing the object files in a library; and
removing the object files. The last phase is completely dominated by I/O and
only two processes are active (one for each of the runs). In the middle phase, I/O
also plays a major role and the processor is largely idle. The overall workload is
much more system and 1/0 intensive than the highly tuned commercial workload.

For the workload measurements, we assume the following memory and I/O
systems:
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Misses per 1000 instructions

Block size (bytes)

Figure 4.14 The number of misses per 1000 instructions drops steadily as the block
size of the L3 cache is increased, making a good case for an L3 block size of at least
128 bytes. The L3 cache is 2 MB, two-way set associative.

Level I instruction cache—-32 KB two-way set associative with a 64-byte
block, 1 clock cycle hit time.

Level I data cache—-32 KB, two-way set associative with a 32-byte block. |
clock cycle hit time. We vary the 1.1 data cache to examine its effect on cache
behavior.

Level 2 cache—1 MB unified. two-way set associative with a 128-byte block,
hit time 10 clock cycles.

Main memoryv—-—Single memory on a bus with an access time of 100 clock
cycles.

Disk system—Fixed-access latency of 3 ms (less than normal to reduce idle
time).

Figure 4.15 shows how the execution time breaks down for the eight pro-

cessors using the parameters just listed. Execution time is broken into four
components:

ldle~-Execution in the kernel mode idle loop
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User Kernel Synchronization CPU idle
execution  execution wait {(waiting for 1/0)
% instructions 27 3 1 69
executed
% execution time 27 7 2 64

Figure 4.15 The distribution of execution time in the multiprogrammed parallel
make workload. The high fraction of idle time is due to disk latency when only one of
the eight processors is active. These data and the subsequent measurements for this
workload were collected with the SimOS system [Rosenblum et al. 1995]. The actual
runs and data collection were done by M. Rosenbium, S. Herrod, and E. Bugnion of
Stanford University.

2. User-——Execution in user code
Synchronization—Execution or waiting for synchronization variables

4. Kernel—Execution in the OS that is neither idle nor in synchronization
access

This multiprogramming workload has a significant instruction cache perfor-
mance loss, at least for the OS. The instruction cache miss rate in the OS for a 64-
byte block size, two-way set-associative cache varies from 1.7% for a 32 KB
cache to 0.2% for a 256 KB cache. User-level instruction cache misses are
roughly one-sixth of the OS rate, across the variety of cache sizes. This partially
accounts for the fact that although the user code executes nine times as many
instructions as the kernel, those instructions rake only about four times as long as
the smaller number of instructions executed by the kernel.

Performance of the Multiprogramming and OS Workload

In this subsection we examine the cache performance of the multiprogrammed
workload as the cache size and block size are changed. Because of differences
between the behavior of the kernel and that of the user processes, we keep these
two components separate. Remember, though, that the user processes execute
more than eight times as many instructions, so that the overall miss rate is deter-
mined primarily by the miss rate in user code, which. as we will see, is often one-
fifth of the kernel miss rate.

Although the user code executes more instructions, the behavior of the oper-
ating system can cause more cache misses than the user processes for two reasons
beyond larger code size and lack of locality. First. the kernel initializes all pages
before allocating them to a user, which significantly increases the compulsory
component of the kernel's miss rate. Second, the kernel actually shares data and
thus has a nontrivial coherence miss rate. In contrast, user processes cause coher-
ence misses only when the process is scheduled on a different processor, and this
component of the miss rate is small.
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Figure 4.16 shows the data miss rate versus data cache size and versus block
size for the kernel and user components. Increasing the data cache size affects the
user miss rate more than it affects the kernel miss rate. Increasing the block size
has beneficial effects for both miss rates, since a larger fraction of the misses
arise from compulsory and capacity, both of which can be potentially improved
with larger block sizes. Since coherence misses are relatively rarer. the negative
effects of increasing block size are small. To understand why the kernel and user
processes behave differently, we can look at the how the kernel misses behave.

Figure 4.17 shows the variation in the kernel misses versus increases in cache
size and in block size. The misses are broken into three classes: compulsory
misses. coherence misses (from both true and false sharing). and capacity/contlict
misses (which include misses caused by interference between the OS and the
user process and between multiple user processes). Figure 4.17 confirms that, for
the kernel references, increasing the cache size reduces solely the uniprocessor
capacity/conflict miss rate. In contrast. increasing the block size causes a reduc-
tion in the compulsory miss rate. The absence of large increases in the coherence
miss rate as block size is increased means that false sharing effects are probably
insignificant, although such misses may be offsetting some of the gains from
reducing the true sharing misses.

If we examine the number of bytes needed per data reference, as in Figure
4.18, we see that the kernel has a higher traffic ratio that grows with block size. It
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Figure 4.16 The data miss rates for the user and kernel components behave differently for increases in the L1
data cache size (on the left) versus increases in the L1 data cache block size (on the right).Increasing the L1 data
cache from 32 KB to 256 KB (with a 32-byte block) causes the user miss rate to decrease proportionately more than
the kernel miss rate: the user-level miss rate drops by almost a factor of 3, while the kernel-level miss rate drops only
by a factor of 1.3.The miss rate for both user and kernel components drops steadily as the L1 block size is increased
(while keeping the L1 cache at 32 KB).In contrast to the effects of increasing the cache size, increasing the block size
improves the kernel miss rate more significantly (just under a factor of 4 for the kernel references when going from
16-byte to 128-byte blocks versus just under a factor of 3 for the user references).
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Figure 4.17 The components of the kernel data miss rate change as the L1 data
cache size is increased from 32 KB to 256 KB, when the multiprogramming workload
is run on eight processors.The compulsory miss rate component stays constant, since
it is unaffected by cache size.The capacity component drops by more than a factor of 2,
while the coherence component nearly doubles. The increase in coherence misses
occurs because the probability of a miss being caused by an invalidation increases with
cache size, since fewer entries are bumped due to capacity. As we would expect, the
increasing block size of the L1 data cache substantially reduces the compulsory miss
rate in the kernel references. it also has a significant impact on the capacity miss rate,
decreasing it by a factor of 2.4 over the range of block sizes.The increased block size has
a small reduction in coherence traffic, which appears to stabilize at 64 bytes, with no
change in the coherence miss rate in going to 128-byte lines. Because there are not sig-
nificant reductions in the coherence miss rate as the block size increases, the fraction of
the miss rate due to coherence grows from about 7% to about 15%.
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Figure 4.18 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this
chart against the data on scientific programs shown in Appendix H.
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is easy to see why this occurs: when going from a 16-byte block to a 128-byte
block, the miss rate drops by about 3.7, but the number of bytes transferred per
miss increases by 8. so the total miss traffic increases by just over a factor of 2.
The user program also more than doubles as the block size goes from 16 to 128
bytes, but it starts out at a much lower level.

For the multiprogrammed workload, the OS is a much more demanding user
of the memory system. If more OS or OS-like activity is included in the work-
load, and the behavior is similar to what was measured for this workload, it will
become very difficult to build a sufficiently capable memory system. One possi-
ble route to improving performance is to make the OS more cache aware, through
either better programming environments or through programmer assistance. For
example, the OS reuses memory for requests that arise from different system
calls. Despite the fact that the reused memory will be completely overwritten, the
hardware. not recognizing this, will attempt to preserve coherency and the possi-
bility thar some portion of a cache block may be read, even if it is not. This
behavior is analogous to the reuse of stack locations on procedure invocations.
The IBM Power series has support to allow the compiler to indicate this type of
behavior on procedure invocations. It is harder to detect such behavior by the OS.
and doing so may require programmer assistance, but the payoft is potentially
even greater.

Distributed Shared Memory and Directory-Based
Coherence

As we saw in Section 4.2, a snooping protocol requires communication with all
caches on every cache miss, including writes of potentially shared data. The
absence of any centralized data structure that tracks the state of the caches is both
the fundamental advantage of a snooping-based scheme, since it allows it to be
inexpensive, as well as its Achilles’ heel when it comes to scalability.

For example, with only 16 processors, a block size of 64 bytes. and a 512 KB
data cache, the total bus bandwidth demand (ignoring stall cycles) for the four
programs in the scientific/technical workload of Appendix H ranges from about
4 GB/sec to about 170 GB/sec, assuming a processor that sustains one data refer-
ence per clock. which for a 4 GHz clock is four data references per ns, which is
what a 2006 superscalar processor with nonblocking caches might generate. In
comparison, the memory bandwidth of the highest-performance centralized
shared-memory 16-way multiprocessor in 2006 was 2.4 GB/sec per processor. In
2006, multiprocessors with a distributed-memory model are available with over
12 GB/sec per processor to the nearest memory.

We can increase the memory bandwidth and interconnection bandwidth by
distributing the memory, as shown in Figure 4.2 on page 201; this immediately
separates local memory traffic from remote memory traffic, reducing the band-
width demands on the memory system and on the interconnection network.
Unless we eliminate the need for the coherence protocol to broadcast on every
cache miss, distributing the memory will gain us little.
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As we mentioned earlier, the alternative o a snoop-based coherence protocol
is a directory protocol. A directory keeps the state of every block that may be
cached. Information in the directory includes which caches have copies of the
block, whether it is dirtv, and so on. A directory protocol also can be used to
reduce the bandwidth demands in a centralized shared-memory machine. as the
Sun T} design does (see Section 4.8.) We explain a directory protocol as if it
were implemented with a distributed memory. but the same design also applies to
a centralized memory organized into banks.

The simplest directory implementations associate an entry in the directory
with each memory block In such implementations, the amount of information is
proportional to the product of the number of memory blocks (where each block is
the same size as the level 2 or level 3 cache block) and the number of processors.
This overhead is not a problem for multiprocessors with less than about 200 pro-
cessors because the directory overhead with i reasonable block size will be toler-
able. For larger multiprocessors, we need methods to allow the directory
structure to be efficiently scaled. The methods that have been used either try to
keep information for fewer blocks (e.g., only those in caches rather than all mem-
ory blocks) or try to keep fewer bits per entry by using individual bits to stand for
a small collection of processors.

To prevent the directory from becoming the bottleneck, the directory is dis-
tributed along with the memory (or with the interleaved memory banks in an
SMP), so that different directory accesses can go to different directories, just as
different memory requests go to difterent memories. A distributed directory
retains the characteristic that the sharing status of a block is always in a single
known location. This property is what allows the coherence protocol to avoid
broadcast. Figure 4.19 shows how our distributed-memory multiprocessor looks
with the directories added to each node.

Directory-Based Cache Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a directory
protocol must implement: handling a read miss and handling a write to a shared,
clean cache block. (Handling a write miss to a block that is currently shared is a
simple combination of these two.) To implement these operations, a directory
must track the state of each cache block. In a simple protocol, these states could
be the following:

m  Shared—One or more processors have the block cached, and the value in
memory is up to date (as well as in ail the caches).
m  Uncached—No processor has a copy of the cache block.

m  Modified—Exactly one processor has a copy of the cache block, and it has
written the block, so the memory copy is out of date. The processor is called
the owner of the block.
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Figure 4.19 A directory is added to each node to implement cache coherence in a
distributed-memory multiprocessor. Each directory is responsible for tracking the
caches that share the memory addresses of the portion of memory in the node. The
directory may communicate with the processor and memory over a common bus, as
shown, or it may have a separate port to memory, or it may be part of a central node
controller through which all intranode and internode communications pass.

In addition to tracking the state of each potentially shared memory block, we
must track which processors have copies of that block, since those copies will
need to be invalidated on a write. The simplest way to do this is to keep a bit vec-
tor for each memory block. When the block is shared, each bit of the vector indi-
cates whether the corresponding processor has a copy of that block. We can also
use the bit vector to keep track of the owner of the block when the block is in the
exclusive state. For efficiency reasons, we also track the state of each cache block
at the individual caches.

The states and transitions for the state machine at each cache are identical to
what we used for the snooping cache, although the actions on a transition are
slightly different. The process of invalidating or locating an exclusive copy of a
data item are different, since they both involve communication between the
requesting node and the directory and between the directory and one or more
remote nodes. In a snooping protocol, these two steps are combined through the
use of a broadcast to all nodes.

Before we see the protocol state diagrams, it is useful to examine a catalog of
the message types that may be sent between the processors and the directories for
the purpose of handling misses and maintaining coherence. Figure 4.20 shows
the type of messages sent among nodes. The local node is the node where a
request originates. The home node is the node where the memory location and the
directory entry of an address reside. The physical address space is statically dis-
tributed, so the node that contains the memory and directory for a given physical
address is known. For example, the high-order bits may provide the node number,
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Message

Message type Source Destination contents  Function of this message

Read miss local cache home directory P, A Processor P has a read miss at address A;
request data and make P a read sharer.

Write miss local cache home directory P A Processor P has a write miss at address A;
request data and make P the exclusive owner.

Invalidate local cache home directory A Request to send invalidates to all remote caches
that are caching the block at address A.

[nvalidate home directory remote cache A Invalidate a shared copy of data at address A.

Fetch home directory remote cache A Fetch the block at address A and send it to its
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate home directory remote cache A Fetch the block at address A and send it to its
home directory; invalidate the block in the
cache.

Data value reply home directory local cache D Return a data value from the home memory.

Data write back

remote cache

home directory A, D Write back a data value for address A.

Figure 4.20 The possible messages sent among nodes to maintain coherence, along with the source and desti-
nation node, the contents (where P = requesting processor number, A = requested address, and D = data con-
tents), and the function of the message. The first three messages are requests sent by the local cache to the home.
The fourth through sixth messages are messages sent to a remote cache by the home when the home needs the
data to satisfy a read or write miss request. Data value replies are used to send a value from the home node back to
the requesting node. Data value write backs occur for two reasons: when a block is replaced in a cache and must be
written back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home. Writing
back the data value whenever the block becomes shared simplifies the number of states in the protocol, since any
dirty block must be exclusive and any shared block is always available in the home memory.

while the low-order bits provide the offset within the memory on that node. The
local node may also be the home node. The directory must be accessed when the
home node is the local node, since copies may exist in yet a third node, called a
remote node.

A remote node is the node that has a copy of a cache block, whether exclusive
(in which case it is the only copy) or shared. A remote node may be the same as
either the local node or the home node. In such cases, the basic protocol does not
change, but interprocessor messages may be replaced with intraprocessor
messages.

In this section, we assume a simple model of memory consistency. To mini-
mize the type of messages and the complexity of the protocol, we make an
assumption that messages will be received and acted upon in the same order they
are sent. This assumption may not be true in practice and can result in additional
complications, some of which we address in Section 4.6 when we discuss mem-
ory consistency models. In this section, we use this assumption to ensure that
invalidates sent by a processor are honored before new messages are transmitted,
just as we assumed in the discussion of implementing snooping protocols. As we
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did in the snooping case, we omit some details necessary to implement the coher-
ence protocol. In particular, the serialization of writes and knowing that the inval-
idates for a write have completed are not as simple as in the broadcast-based
snooping mechanism. Instead. explicit acknowledgements are required in
response (0 write misses and invalidate requests. We discuss these issues in more
detail in Appendix H.

An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactly like
those in a snooping protocol. and the states in the directory are also analogous to
those we showed earlier. Thus we can start with simple state diagrams that show
the state transitions for an individual cache block and then examine the state dia-
gram for the directory entry corresponding to each block in memory. As in the
snooping case, these state transition diagrams do not represent all the details of a
coherence protocol; however, the actual controller is highly dependent on a num-
ber of details of the multiprocessor (message delivery properties. buffering struc-
tures, and so on). In this section we present the basic protocol state diagrams. The
knotty issues involved in implementing these state transition diagrams are exam-
ined in Appendix H.

Figure 4.21 shows the protocol actions to which an individual cache
responds. We use the same notation as in the last section, with requests coming
from outside the node in gray and actions in bold. The state transitions for an
individual cache are caused by read misses, write misses, invalidates, and data
fetch requests; these operations are all shown in Figure 4.21. An individual cache
also generates read miss, write miss, and invalidate messages that are sent to the
home dircctory. Read and write misses require data value replies, and these
events wait for replies before changing state. Knowing when invalidates com-
plete is a separate problem and is handled separately.

The operation of the state transition diagram for a cache block in Figure 4.21
is essentially the same as it is for the snooping case: The states are identical, and
the stimulus is almost identical. The write miss operation, which was broadcast
on the bus (or other network) in the snooping scheme, is replaced by the data
fetch and invalidate operations that are selectively sent by the directory control-
ler. Like the snooping protocol. any cache block must be in the exclusive state
when it is written, and any shared block must be up to date in memory.

In a directory-based protocol. the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types of
actions: updating the directory state and sending additional messages to satisfy
the request. The states in the directory represent the three standard states for a
block: unlike in a snoopy scheme. however, the directory state indicates the state
of all the cached copies of a memory block, rather than for a single cache block.

The memory block may be uncached by any node. cached in multiple nodes
and readable (shared), or cached exclusively and writable in exactly one node. In
addition to the state of each block. the directory must track the set of processors
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Figure 4.21 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black, and those from the
home directory are shown in gray. The states are identical to those in the snooping
case, and the transactions are very similar, with explicit invalidate and write-back
requests replacing the write misses that were formerly broadcast on the bus. As we did
for the snooping controlier, we assume that an attempt to write a shared cache block is
treated as a miss; in practice, such a transaction can be treated as an ownership request
or upgrade request and can deliver ownership without requiring that the cache block
be fetched.

that have a copy of a block: we use a set called Sharers to perform this function.
In multiprocessors with less than 64 nodes (each of which may represent two to
four times as many processors). this set is typically kept as a bit vector. In larger
multiprocessors, other techniques are needed. Directory requests need to update
the set Sharers and also read the set to perform invalidations.

Figure 4.22 shows the actions taken at the directory in response to messages
received. The directory receives three different requests: read miss, write miss.
and data write back. The messages sent in response by the directory are shown in
bold, while the updating of the set Sharers 1s shown in bold italics. Because all
the stimulus messages are external, all actions are shown in gray. Our simplified
protocol assumes that some actions are atomic, such as requesting a value and
sending it to another node; a realistic implementation cannot use this assumption.
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Figure 4.22 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray
because they are all externally caused. Bold indicates the action taken by the directory
in response to the request.

To understand these directory operations. let’s examine the requests received
and actions taken state by state. When a block is in the uncached state. the copy
in memory is the current value, so the only possible requests for that block are

m  Read miss—The requesting processor is sent the requested data from mem-
ory, and the requestor is made the only sharing node. The state of the block is
made shared.

m  Write miss—The requesting processor is sent the value and becomes the shar.
ing node. The block is made exclusive to indicate that the only valid copy is
cached. Sharers indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date. so the same
two requests can occur:

m  Read miss—The requesting processor is sent the requested data from mem-
ory, and the requesting processor is added to the sharing set.

u  Write miss—The requesting processor is sent the value. All processors in the
set Sharers are sent invalidate messages, and the Sharers set is to contain the
identity of the requesting processor. The state of the block is made exclusive.
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When the block is in the exclusive state, the current value of the block is held in
the cache of the processor identified by the set Sharers (the owner), so there are
three possible directory requests:

s Read miss—The owner processor is sent a data fetch message, which causes
the state of the block in the owner’s cache to transition to shared and causes
the owner to send the data to the directory, where it is written to memory and
sent back to the requesting processor. The identity of the requesting processor
is added to the set Sharers, which still contains the identity of the processor
that was the owner (since it still has a readable copy).

a  Data write back—The owner processor is replacing the block and therefore
must write it back. This write back makes the memory copy up to date (the
home directory essentially becomes the owner), the block is now uncached,
and the Sharers set is empty.

a  Write miss—The block has a new owner. A message is sent to the old owner,
causing the cache to invalidate the block and send the value to the directory,
from which it is sent to the requesting processor, which becomes the new
owner. Sharers is set to the identity of the new owner, and the state of the
block remains exclusive.

This state transition diagram in Figure 4.22 is a simplification, just as it was
in the snooping cache case. In the case of a directory, as well as a snooping
scheme implemented with a network other than a bus. our protocols will need
to deal with nonatomic memory transactions. Appendix H explores these issues
in depth.

The directory protocols used in real multiprocessors contain additional opti-
mizations. In particular, in this protocol when a read or write miss occurs for a
block that is exclusive, the block is first sent to the directory at the home node.
From there it is stored into the home memory and also sent to the original
requesting node. Many of the protocols in use in commercial multiprocessors for-
ward the data from the owner node to the requesting node directly (as well as per-
forming the write back to the home). Such optimizations often add complexity by
increasing the possibility of deadlock and by increasing the types of messages
that must be handled.

Implementing a directory scheme requires solving most of the same chal-
lenges we discussed for snoopy protocols beginning on page 217. There are,
however, new and additional problems, which we describe in Appendix H.

Synchronization: The Basics

Synchronization mechanisms are typically built with user-level software routines
that rely on hardware-supplied synchronization instructions. For smaller multi-
processors or low-contention situations, the key hardware capability is an unin-
terruptible instruction or instruction sequence capable of atomically retrieving
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and changing a value. Software synchronization mechanisms are then con-
structed using this capability. In this section we focus on the implementation of
lock and unlock synchronization operations. Lock and unlock can be used
straightforwardly to create mutual exclusion. as well as to implement more com-
plex synchronization mechanisms.

In larger-scale multiprocessors or high-contention situations. synchronization
can become a performance bottleneck because contention introduces additional
delays and because latency is potentially greater in such a multiprocessor. We dis-
cuss how the basic synchronization mechanisms of this section can be extended
for large processor counts in Appendix H.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor is a
set of hardware primitives with the ability to atomically read and modify a mem-
ory location. Without such a capability. the cost of building basic synchronization
primitives will be too high and will increase as the processor count increases.
There are a number of alternative formulations of the basic hardware primitives.
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. These
hardware primitives are the basic building blocks that are used to build a wide
variety oi user-level synchronization operations, including things such as locks
and barriers. In general, architects do not expect users to employ the basic hard-
ware primitives, but instead expect that the primitives will be used by system pro-
grammers to build a synchronization library, a process that is often complex and
tricky. Let’s start with one such hardware primitive and show how it can be used
to build some basic synchronization operations.

One typical operation for building synchronization operations is the atomic
exchange. which interchanges a value in a register for a value in memory. To see
how to use this to build a basic synchronization operation, assume that we want
to build a simple lock where the value O is used to indicate that the lock is free
and 1 is used to indicate that the lock is unavailable. A processor tries to set the
lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1
if some other processor had already claimed access and 0 otherwise. In the latter
case, the value is also changed to 1, preventing any competing exchange from
also retrieving a 0.

For example, consider two processors that each try to do the exchange simul-
taneously: This race is broken since exactly one of the processors will perform
the exchange first, returning 0. and the second processor will return 1 when it
does the ¢xchange. The key to using the exchange (or swap) primitive to imple-
ment synchronization is that the operation is atomic: The exchange is indivisible,
and two simultaneous exchanges will be ordered by the write serialization mech-
anisms. It is impossible for two processors trying to set the synchronization vari-
able in this manner to both think they have simultaneously set the variable.
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There are a number of other atomic primitives that can be used to implement
synchronization. They all have the key property that they read and update a mem-
ory value in such a manner that we can tell whether or not the two operations
executed atomically. One operation, present in many older multiprocessors. is
test-and-set. which tests a value and sets it if the value passes the test. For exam-
ple, we could define an operation that tested for 0 and set the value to 1. which
can be used in a fashion similar to how we used atomic exchange. Another atomic
synchronization primitive is fetch-and-increment: It returns the value of a mem-
ory location and atomically increments it. By using the value 0 to indicate that
the synchronization variable is unclaimed. we can use fetch-and-increment, just
as we used exchange. There are other uses of operations like fetch-and-
increment, which we will see shortly.

Implementing a single atomic memory operation introduces some challenges.
since it requires both a memory read and a write in a single, uninterruptible
instruction. This requirement complicates the implementation of coherence, since
the hardware cannot allow any other operations between the read and the write,
and yet must not deadlock.

An alternative is to have a pair of instructions where the second instruction
returns a value from which it can be deduced whether the pair of instructions was
executed as if the instructions were atomic. The pair of instructions is effectively
atomic if it appears as if all other operations exccuted by any processor occurred
before or after the pair. Thus, when an instriction pair is effectively atomic, no
other processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are used
in sequence: If the contents of the memory Jocation specified by the load linked
are changed before the store conditional to the same address occurs, then the
store conditional fails. If the processor does a context switch between the two
instructions, then the store conditional also fails. The store conditional is defined
to return 1 if it was successful and a 0 otherwise. Since the load linked returns the
initial value and the store conditional returns 1 only if it succeeds. the following
sequence implements an atomic exchange on the memory location specified by
the contents of R1:

try: MOV R3,R4 smov exchange value
LL R2,0(R1) ;Toad linked
SC R3,0(R1) ;store conditional
BEQZ R3.try ;branch store fails
MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location speci-
fied by R1 have been atomically exchanged (ignoring any effect from delayed
branches). Any time a processor intervenes and modifies the value in memory
between the LL and SC instructions. the SC returns 0 in R3, causing the code
sequence to try again.
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An advantage of the load linked/store conditional mechanism is that it can be
used to build other synchronization primitives. For example, here is an atomic
fetch-and-increment:

try: LL R2,0(R1) ;load linked
DADDUI  R3,RZ,#1 ;increment
SC R3,0(R1) ;store conditional

BEQZ R3,try sbranch store fails

These instructions are typically implemented by keeping track of the address
specified in the LL instruction in a register, often called the link register. If an
interrupt occurs, or if the cache block matching the address in the link register is
invalidated (for example, by another SC), the link register is cleared. The SC
instruction simply checks that its address matches that in the link register. If so,
the SC succeeds; otherwise, it fails. Since the store conditional will fail after
either another attempted store to the load linked address or any exception, carc
must be taken in choosing what instructions are inserted between the two instruc-
tions. In particular, only register-register instructions can safely be permitted:
otherwise, it is possible to create deadlock situations where the processor can
never coruplete the SC. In addition, the number of instructions between the load
linked and the store conditional should be small to minimize the probability that
either an unrelated event or a competing processor causes the store conditional to
fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanisms of
multiprocessor to implement spin locks—locks that a processor continuously tries
to acquire, spinning around a loop until it succeeds. Spin locks are used when
programmiers expect the lock to be held for a very short amount of time and when
they want the process of locking to be low latency when the lock is available.
Because spin locks tie up the processor, waiting in a loop for the lock to become
free, they are inappropriate in some circumstances.

The simplest implementation, which we would use if there were no cache
coherence, would keep the lock variables in memory. A processor could continu-
ally try to acquire the lock using an atomic operation. say, exchange, and test
whether the exchange returned the lock as free. To release the lock. the processor
simply stores the value O to the lock. Here is the code sequence to lock a spin
lock whose address is in R1 using an atomic exchange:

DADDUI  R2,R0,#1
Tockit: EXCH R2,0(R1) ;atomic exchange
BNEZ R2,Tockit ;already locked?
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If our multiprocessor supports cache coherence, we can cache the locks using
the coherence mechanism to maintain the lock value coherently. Caching locks
has two advantages. First, it allows an impiementation where the process of
“spinning” (trying to test and acquire the lock in a tight loop) could be done on a
local cached copy rather than requiring a global memory access on each attempt
to acquire the lock. The second advantage comes from the observation that there
is often locality in lock accesses: that is, the processor that used the lock last will
use it again in the near future. In such cases, the lock value may reside in the
cache of that processor, greatly reducing the time to acquire the lock.

Obtaining the first advantage—being able to spin on a local cached copy
rather than generating a memory request for each attempt to acquire the lock—
requires a change in our simple spin procedure. Each attempt to exchange in the
loop directly above requires a write operation. If multiple processors are attempt-
ing to get the lock, each will generate the write. Most of these writes will lead to
write misses, since each processor is trying to obtain the lock variable in an
exclusive state.

Thus, we should modify our spin lock procedure so that it spins by doing
reads on a local copy of the lock until it successfully sees that the lock is avail-
able. Then it attempts to acquire the lock by doing a swap operation. A processor
first reads the lock variable to test its state. A processor keeps reading and testing
until the value of the read indicates that the lock is unlocked. The processor then
races against all other processes that were similarly “spin waiting” to see who can
lock the variable first. All processes use a swap instruction that reads the old
value and stores a 1 into the lock variable. The single winner will see the 0, and
the losers will see a 1 that was placed there by the winner. (The losers will con-
tinue to set the variable to the locked value, but that doesn’t matter.) The winning
processor executes the code after the lock and, when finished, stores a 0 into the
lock variable to release the lock, which starts the race all over again. Here is the
code to perform this spin lock (remember that 0 is unlocked and 1 is locked):

lockit: LD R2,0(R1) ;load of Tock
BNEZ R2,1lockit ;not available-spin
DADDUI R2,R0,#1 ;1oad locked value
EXCH R2,0(R1) ;swap
BNEZ R2,1ockit ;branch if lock wasn't 0

Let’s examine how this “spin lock™ scheme uses the cache coherence mecha-
nisms. Figure 4.23 shows the processor and bus or directory operations for multi-
ple processes trying to lock a variable using an atomic swap. Once the processor
with the lock stores a 0 into the lock, all other caches are invalidated and must
fetch the new value to update their copy of the lock. One such cache gets the copy
of the unlocked value (0) first and performs the swap. When the cache miss of
other processors is satisfied, they find that the variable is already locked, so they
must return to testing and spinning.
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Coherence
Step Processor PO Processor P1 Processor P2 state of lock Bus/directory activity
1 Has lock Spins, testing if Spins, testing if Shared None
lock=0 lock =0
2 Set lock to O (Invalidate received)  (Invalidate received)  Exclusive (PO)  Write invalidate of lock
variable from PO
3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write back
from PO
4 (Waits while bus/ Lock=0 Shared Cache miss for P2 satistied
directory busy)
5 Lock =0 Executes swap. gets  Shared Cache miss for P1 satisfied
cache miss
6 Executes swap, Completes swap: Exclusive (P2)  Bus/directory services P2
gets cache miss returns 0 and sets cache miss; generates
Lock =1 invalidate
7 Swap completes and  Enter critical section  Exclusive (P1)  Bus/directory services Pl
returns 1, and sets cache miss; generates write
Lock = | back
8 Spins, testing if None

lock =0

Figure 4.23 Cache coherence steps and bus traffic for three processors, PO, P1, and P2. This figure assumes write
invalidate coherence. PO starts with the lock (step 1). PO exits and unlocks the lock (step 2). P1 and P2 race to see
which reads the unlocked value during the swap (steps 3-5). P2 wins and enters the critical section (steps 6 and 7),
while P1's attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more
than 8 clock ticks, since acquiring the bus and replying to misses takes much longer.

This example shows another advantage of the load linked/store conditional
primitives: The read and write operations are explicitly separated. The load
linked need not cause any bus traffic. This fact allows the following simple code
sequence, which bas the same characteristics as the optimized version using
exchange (R1 has the address of the lock, the LL has replaced the LD, and the SC
has replaced the EXCH):

Tockit: LL R2,0(R1) ;load linked
BNEZ R2,lockit ;hot available-spin
DADDUI ~ R2,R0,#1 ;locked value
SC R2,0(R1) ;store
BEQZ R2,Tockit sbranch if store fails

The first branch forms the spinning loop; the second branch resolves races when
two processors see the lock available simultaneously.

Although our spin lock scheme is simple and compelling, it has difficulty
scaling up to handle many processors because of the communication traffic gen-
erated when the lock is released. We address this issue and other issues for larger
processor counts in Appendix H.



4.6

4.6 Models of Memory Coasistency: An Introduction 243

Models of Memory Consistency: An Introduction

Cache coherence ensures that multiple processors see a consistent view of mem-
ory. It does not answer the question of how consistent the view of memory must
be. By “how consistent” we mean, when must a processor see a value that has
been updated by another processor? Since processors communicate through
shared variables (used both for data values and for synchronization), the question
boils down to this: In what order must a processor observe the data writes of
another processor? Since the only way to “observe the writes of another proces-
sor” is through reads. the question becomes, What properties must be enforced
among reads and writes to different locations by different processors?

Although the question of how consistent memory must be seems simple. it is
remarkably complicated, as we can see with a simple example. Here are two code
segments from processes P1 and P2, shown side by side:

P1: A= 0; p2: B = 0;
A=1; B =1;
Li: if B ==10) ... L2: if (A==0)...

Assume that the processes are running on different processors. and that locations
A and B are originally cached by both processors with the initial value of 0. If
writes always take immediate effect and are immediately seen by other proces-
sors, it will be impossible for both if staternents (labeled L1 and L2) to evaluate
their conditions as true. since reaching the if statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is delayed,
and the processor is allowed to continue during this delay; then it is possible that
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question is, Should this behavior be allowed,
and if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any execution be
the same as if the memory accesses executed by each processor were kept in
order and the accesses among different processors were arbitrarily interleaved.
Sequential consistency eliminates the possibility of some nonobvious execution
in the previous example because the assignments must be completed before the if
statemnents are initiated.

The simplest way to implement sequential consistency 1s to require a proces-
sor to delay the completion of any memory access until all the invalidations
caused by that access are completed. Of course, it is equally effective to delay the
next memory access until the previous one is completed. Remember that memory
consistency involves operations among different variables: the two accesses that
must be ordered are actually to different memory locations. In our example, we
must delay the read of A or B (A == 0 or B == 0) until the previous write has com-
pleted (B = 1 or A = 1). Under sequential consistency, we cannot, for example,
simply place the write in a write buffer and continue with the read.
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Although sequential consistency presents a simple programming paradigm, it
reduces potential performance, especially in a multiprocessor with a large num-
ber of processors or long interconnect delays, as we can see in the following
example.

Example

Answer

Suppose we have a processor where a write miss takes 50 cycles to establish
ownership, 10 cycles to issue each invalidate after ownership is established, and
80 cycles for an invalidate to complete and be acknowledged once it is issued.
Assuming that four other processors share a cache block, how long does a write
miss stall the writing processor if the processor is sequentially consistent?
Assume that the invalidates must be explicitly acknowledged before the coher-
ence controller knows they are completed. Suppose we could continue executing
after obtaining ownership for the write miss without waiting for the invalidates:
how long would the write take?

When we wait for invalidates, each write takes the sum of the ownership time
plus the time to complete the invalidates. Since the invalidates can overlap, we
need only worry about the last one, which starts 10 + 10 + 10 + 10 = 40 cycles
after ownership is established. Hence the total time for the write is 50 + 40 + 80 =
170 cycles. In comparison, the ownership time is only 50 cycles. With appropri-
ate write buffer implementations, it is even possible to continue before ownership
is established.

To provide better performance, researchers and architects have explored two
different routes. First, they developed ambitious implementations that preserve
sequential consistency but use latency-hiding techniques to reduce the penalty:
we discuss these in Section 4.7. Second. they developed less restrictive memory
consistency models that allow for faster hardware. Such models can affect how
the programmer sees the multiprocessor, so before we discuss these less restric-
tive models, let’s look at what the programmer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvantage,
from the viewpoint of the programmer it has the advantage of simplicity. The
challenge is to develop a programming model that is simple to explain and yet
allows a high-performance implementation.

One such programming model that allows us to have a more efficient imple-
mentation is to assume that programs are synchronized. A program is synchro-
nized if all access to shared data are ordered by synchronization operations. A
data reference is ordered by a synchronization operation if, in every possible exe-
cution, a write of a variable by one processor and an access (either a read or a
write) of that variable by another processor are separated by a pair of synchroni-
zation operations, one executed after the write by the writing processor and one
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executed before the access by the second processor. Cases where variables may
be updated without ordering by synchronization are called data races because the
execution outcome depends on the relative speed of the processors, and like races
in hardware design, the outcome is unpredictable. which leads to another name
for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by two dif-
ferent processors. Each processor surrounds the read and update with a lock and
an unlock, both to ensure mutual exclusion for the update and to ensure that the
read is consistent. Clearly, every write is now separated from a read by the other
processor by a pair of synchronization operations: one unlock (after the write)
and one lock (before the read). Of course, if two processors are writing a variable
with no intervening reads, then the writes must also be separated by synchroniza-
tion operations.

It is a broadly accepted observation that most programs are synchronized.
This observation is true primarily because :f the accesses were unsynchronized,
the behavior of the program would likely be unpredictable because the speed of
execution would determine which processcr won a data race and thus affect the
results of the program. Even with sequential consistency. reasoning about such
programs is very difficult.

Programmers could attempt to guarantee ordering by constructing their own
synchronization mechanisms, but this is extremely tricky, can lead to buggy pro-
grams, and may not be supported architecturally, meaning that they may not
work in future generations of the multiprocessor. Instead, almost all program-
mers will choose to use synchronization libraries that are correct and optimized
for the multiprocessor and the type of synchronization.

Finally, the use of standard synchronization primitives ensures that even if the
architecture implements a more relaxed consistency model than sequential con-
sistency, a synchronized program will behave as if the hardware implemented
sequential consistency.

Relaxed Consistency Models: The Basics

The key idea in relaxed consistency models is to allow reads and writes to com-
plete out of order. but to use synchronization operations to enforce ordering, so
that a synchronized program behaves as if the processor were sequentially con-
sistent. There are a variety of relaxed models that are classified according to what
read and write orderings they relax. We specify the orderings by a set of rules of
the form X—Y. meaning that operation X must complete before operation Y is
done. Sequential consistency requires maintaining all four possible orderings:
R—W, R5R, WoR, und W—W. The relaxed models are defined by which of
these four sets of orderings they relax:

1. Relaxing the W—R ordering yields a model known as total store ordering or
processor consistency. Because this ordering retains ordering among writes,
many programs that operate under sequential consistency operate under this
model, without additional synchronization.
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2. Relaxing the W—W ordering yields a model known as partial store order.

3. Relaxing the R—W and R—R orderings yields a variety of models including
weak ordering, the PowerPC consistency model, and release consistency.
depending on the details of the ordering restrictions and how synchronization
operations enforce ordering.

By relaxing these orderings, the processor can possibly obtain significant perfor-
mance advantages. There are, however, many complexities in describing relaxed
consistency models, including the advantages and complexities of relaxing dif-
ferent orders, defining precisely what it means for a write to complete, and decid-
ing when processors can see values that the processor itself has written. For more
information about the complexities, implementation issues, and performance
potential from relaxed models, we highly recommend the excellent tutorial by
Adve and Gharachorloo [1996].

Final Remarks on Consistency Models

At the present time, many multiprocessors being built support some sort of
relaxed consistency model, varying from processor consistency to release consis-
tency. Since synchronization is highly multiprocessor specific and error prone,
the expectation is that most programmers will use standard synchronization
libraries and will write synchronized programs, making the choice of a weak con-
sistency model invisible to the programmer and yielding higher performance.

An alternative viewpoint, which we discuss more extensively in the next sec-
tion, argues that with speculation much of the performance advantage of relaxed
consistency models can be obtained with sequential or processor consistency.

A key part of this argument in favor of relaxed consistency revolves around
the role of the compiler and its ability to optimize memory access to potentially
shared vanables; this topic is also discussed in the next section.

Crosscutting Issues

Because multiprocessors redefine many system characteristics (e.g., performance
assessment, memory latency, and the importance of scalability), they introduce
interesting design problems that cut across the spectrum, affecting both hardware
and software. In this section we give several examples related to the issue of
memory consistency.

Compiler Optimization and the Consistency Model

Another reason for defining a model for memory consistency is to specify the
range of legal compiler optimizations that can be performed on shared data. In
explicitly parallel programs, unless the synchronization points are clearly
defined and the programs are synchronized, the compiler could not interchange
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a read and a write of two different shared data items because such transforma-
tions might affect the semantics of the program. This prevents even relatively
simple optimizations. such as register allocation of shared data, because such a
process usually interchanges reads and writes. In implicitly parallelized pro-
grams—for example, those written in High Performance FORTRAN (HPF)—
programs must be synchronized and the synchronization points are known, so
this issue does not arise.

Using Speculation to Hide Latency in Strict Consistency Models

As we saw in Chapter 2, speculation can be used to hide memory latency. It can
also be used to hide latency arising from a strict consistency model, giving much
of the benefit of a relaxed memory model. The key idea is for the processor to use
dynamic scheduling to reorder memory reterences. letting them possibly execute
out of order. Executing the memory references out of order may generate viola-
tions of sequential consistency, which might affect the execution of the program.
This possibility is avoided by using the delayed commit feature of a speculative
processor. Assume the coherency protocol is based on invalidation. If the proces-
sor receives an invalidation for a memory reference before the memory reference
is committed. the processor uses speculation recovery to back out the computa-
tion and restart with the memory reference whose address was invalidated.

If the reordering of memory requests by the processor yields an execution
order that could result in an outcome that differs from what would have been seen
under sequential consistency, the processor will redo the execution. The key to
using this approach is that the processor need only guarantee that the result
would be the same as if all accesses were completed in order, and it can achieve
this by detecting when the results might differ. The approach is attractive because
the speculative restart will rarely be triggered. It will only be triggered when
there are unsynchronized accesses that actually cause a race [Gharachorloo,
Gupta, and Hennessy 1992}

Hill [1998] advocates the combination of sequential or processor consistency
together with speculative execution as the consistency model of choice. His argu-
ment has three parts. First. an aggressive implementation of either sequential
consistency or processor consistency will gain most of the advantage of a more
relaxed model. Second, such an implementation adds very little to the implemen-
tation cost of a speculative processor. Third, such an approach allows the pro-
grammer to reason using the simpler programming models of either sequential or
processor consistency.

The MIPS R10000 design team had this insight in the mid-1990s and used
the R10000’s out-of-order capability to support this type of aggressive imple-
mentation of sequential consistency. Hill's arguments are likely to motivate oth-
ers to follow this apprcach.

One open question is how successful compiler technology will be in optimiz-
ing memory references to shared variables. The state of optimization technology
and the fact that shared data are often accessed via pointers or array indexing
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have limited the use of such optimizations. If this technology became available
and led to significant performance advantages, compiler writers would want to be
able to take advantage of a more relaxed programming model.

Inclusion and Its Implementation

All multiprocessors use multilevel cache hierarchies to reduce both the demand
on the global interconnect and the latency of cache misses. If the cache also pro-
vides multilevel inclusion—every level of cache hierarchy is a subset of the level
further away from the processor—then we can use the multilevel structure to re-
duce the contention between coherence traffic and processor traffic that occurs
when snoops and processor cache accesses must contend for the cache. Many
multiprocessors with multilevel caches enforce the inclusion property, although
recent multiprocessors with smaller L1 caches and different block sizes have
sometimes chosen not to enforce inclusion. This restriction is also called the sub-
set property because each cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems trivial.
Consider a two-level example: any miss in L1 either hits in L.2 or generates a
miss in L2, causing it to be brought into both L1 and L2. Likewise, any invalidate
that hits in L2 must be sent to 1.1, where it will cause the block to be invalidated
if it exists.

The catch is what happens when the block sizes of L1 and L2 are different.
Choosing ditferent block sizes is quite reasonable, since L2 will be much larger
and have a much longer latency component in its miss penalty, and thus will want
to use a larger block size. What happens to our “automatic” enforcement of inclu-
sion when the block sizes differ? A block in L2 represents multiple blocks in L1,
and a miss in L2 causes the replacement of data that is equivalent to multiple L |
blocks. For example, if the block size of L2 is four times that of L1, then a miss
in L2 will replace the equivalent of four L1 blocks. Let’s consider a detailed
example.

Example

Answer

Assume that L2 has a block size four times that of L1. Show how a miss for an
address that causes a replacement in L1 and L2 can lead to violation of the inclu-
sion property.

Assume that L1 and L2 are direct mapped and that the block size of L1 is b bytes
and the block size of L2 is 4b bytes. Suppose L1 contains two blocks with start-
ing addresses x and x + b and that x mod 4b = 0, meaning that x also is the starting
address of a block in L.2; then that single block in L2 contains the L1 blocks x, x
+ b, x + 2b_and x + 3b. Suppose the processor generates a reference to block v
that maps t the block containing x in both caches and hence misses. Since L2
missed, it fetches 4b bytes and replaces the block containing x, x + b, x + 2b, and
x + 3b, while L1 takes b bytes and replaces the block containing x. Since L1 still
contains x + b, but L2 does not, the inclusion property no longer holds.
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To maintain inclusion with multiple block sizes, we must probe the higher
levels of the hierarchy when a replacement is done at the lower level to ensure
that any words replaced in the lower level are invalidated in the higher-level
caches; different levels of associativity create the same sort of problems. In 2006,
designers appear to be split on the enforcement of inclusion. Baer and Wang
[1988] describe the advantages and challenges of inclusion in detail.

m48 Putting It All Together: The Sun T1 Multiprocessor

T1 is a multicore multiprocessor introduced by Sun in 2005 as a server processor.
What makes T1 especially interesting is that it is almost totally focused on
exploiting thread-level parallelism (TLP) rather than instruction-level parallelism
(ILP). Indeed, it is the only single-issue desktop or server microprocessor intro-
duced in more than five years. Instead of focusing on ILP, T1 puts all its attention
on TLP, using both multiple cores and multithreading to produce throughput.

Each T1 processor contains eight processor cores, each supporting four
threads. Each processor core consists of a simple six-stage, single-issue pipeline
(a standard five-stage RISC pipeline like that of Appendix A, with one stage
added for thread switching). T1 uses fine-grained multithreading, switching to a
new thread on each clock cycle, and threads that are idle because they are waiting
due to a pipeline delay or cache miss are bypassed in the scheduling. The proces-
sor is idle only when all four threads are idle or stalled. Both loads and branches
incur a 3-cycle delay that can only be hidden by other threads. A single set of
floating-point functional units is shared by all eight cores, as floating-point per-
formance was not a focus for T1.

Figure 4.24 shows the organization of the T1 processor. The cores access four
level 2 caches via a crossbar switch, which also provides access to the shared
floating-point unit. Coherency is enforced among the L1 caches by a directory
associated with each L2 cache block. The directory operates analogously to those
we discussed in Section 4.4, but is used to track which L1 caches have copies of
an L2 block. By associating each L2 cache with a particular memory bank and
enforcing the subset property, T1 can place the directory at L2 rather than at the
memory, which reduces the directory overhead. Because the L1 data cache is
write through, only invalidation messages are required; the data can always be
retrieved from the L2 cache.

Figure 4.25 summarizes the T1 processor.

T1 Performance

We look at the performance of T1 using three server-oriented benchmarks: TPC-
C, SPECJBB (the SPEC Java Business Benchmark), and SPECWeb99. The
SPECWeb99 benchmark is run on a four-core version of T1 because it cannot
scale to use the full 32 threads of an eight-core processor; the other two bench-
marks are run with eight cores and 4 threads each for a total of 32 threads.
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Figure 4.24 The T1 processor. Each core supports four threads and has its own level 1
caches (16 KB for instructions and 8 KB for data). The level 2 caches total 3 MB and are
effectively 12-way associative.The caches are interleaved by 64-byte cache lines.

We begin by looking at the effect of multithreading on the performance of the
memory system when running in single-threaded versus multithreaded mode.
Figure 4.26 shows the relative increase in the miss rate and the observed miss
latency when executing with 1 thread per core versus executing 4 threads per core
for TPC-C. Both the miss rates and the miss latencies increase, due to increased
contention in the memory system. The relatively small increase in miss latency
indicates that the memory system still has unused capacity.

As we demonstrated in the previous section, the performance of multiproces-
sor workloads depends intimately on the memory system and the interaction with
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Characteristic SunT

Multiprocessor and Eight cores per chip; four threads per core. Fine-grained thread

multithreading scheduling. One shared floating-point unit for eight cores.

support Supports only on-chip multiprocessing.

Pipeline structure Simple. in-order, six-decp pipeline with 3-cycle delays for loads
and branches.

L1 caches 16 KB instructions; 8 KB data. 64-byte block size. Miss to L2 is

23 cycles, assuming no contention.

L2 caches Feur separate L2 caches. each 750 KB and associated with a
memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming ne contention.

Initial implementation  9¢ nm process; maximum clock rate of 1.2 GHz; power 79 W;
. hd .
3(G0M transistors, 379 mm- die.

Figure 4.25 A summary of the T1 processor.
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Figure 4.26 The relative change in the miss rates and miss latencies when executing
with 1 thread per core versus 4 threads per core on the TPC-C benchmark.The laten-
cies are the actual time to return the requested data after a miss. In the 4-thread case,
the execution of other threads could potential’y hide much of this latency.

the application. For T1 both the L2 cache size and the block size are key parame-
ters. Figure 4.27 shows the effect on miss rates from varying the L2 cache size by
a factor of 2 from the base of 3 MB and by reducing the block size to 32 bytes.
The data clearly show a significant advantage of a 3 MB L2 versus a 1.5 MB; fur-
ther improvements can be gained from a 6 MB L2. As we can see, the choice of a
64-byte block size reduces the miss rate but by considerably less than a factor of
2. Hence, using the larger block size T1 generates more traffic to the memories.
Whether this has a significant performance impact depends on the characteristics
of the memory system.



252 . Chapter Four Multiprocessors and Thread-Level Parallelism

B rccC

20%| % specusB

1.5%

1.0%

0.5% L I I

0.0% - S — i e . .

15MB:32B 1.5MB;64B 3MB:328 3MB;64B 6MB;32B 6MB:64B

L2 miss rate

Figure 4.27 Change in the L2 miss rate with variation in cache size and block si:
Both TPC-C and SPECJBB are run with all eight cores and four threads per core. Rec
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Figure 4.28 The change in the miss latency of the L2 cache as the cache size and
block size are changed. Although TPC-C has a significantly higher miss rate, its miss
penalty is only slightly higher. This is because SPECIBB has a much higher dirty miss
rate, requiring L2 cache lines to be written back with high frequency. Recall that T1 has
a 3 MB L2 with 64-byte lines.

As we mentioned earlier, there is some contention at the memory from multi-
ple threads. How do the cache size and block size affect the contention at the
memory system? Figure 4.28 shows the effect on the L2 cache miss latency under
the same variations as we saw in Figure 4.27. As we can see, for either a 3 MB or
6 MB cache, the larger block size results in a smaller L2 cache miss time. How
can this be if the miss rate changes much less than a factor of 2? As we will see in
more detail in the next chapter, modern DRAMs provide a block of data for only
slightly more time than needed to provide a single word; thus, the miss penalty
for the 32-byte block is only slightly less than the 64-byte block.
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Overall Performance

Figure 4.29 shows the per-thread and per-core CPI, as well as the effective
instructions per clock (IPC) for the eight-processor chip. Because Tl is a fine-
grained multithreaded processor with four threads per core, with sufficient paral-
lelism the ideal effective CPI per thread would be 4. since that would mean that
each thread was consuming one cycle out of every four. The ideal CPI per core
would be 1. The effective IPC for T1 :s simply 8 divided by the per-core CPI.

At first glance, one might react that T1 is not very efficient, since the effective
throughout is between 56% and 71% of the ideal on these three benchmarks. But,
consider the comparative performance of a wide-issue superscalar. Processors
such as the Itanium 2 ¢higher transistor count. much higher power, comparable
silicon area) would need to achieve incredible instruction throughput sustaining
4.5-5.7 instructions pe- clock, well more than double the acknowledged IPC. It
appears quite clear that, at least for integer-oriented server applications with
thread-level parallelism. a multicore approach is a much better alternative than a
single very wide issue processor. The nexr subsection offers some performance
comparisons among multicore processors.

By looking at the behavior of an average thread, we can understand the inter-
action between multithreading and parallel processing. Figure 4.30 shows the
percentage of cycles for which a thread is executing, ready but not executing, and
not ready. Remember that not ready does not imply that the core with that thread
is stalled: it is only when all four threads are not ready that the core will stall.

Threads can be not ready due to vache misses. pipeline delays (arising from
long latency instructions such as branches. loads. floating point. or integer multi-
ply/divide). and a varicty of smaller effects. Figure 4.31 shows the relative fre-
quency of these various causes. Cache effects are responsible for the thread not
being ready from 50% to 75% of the time. with L1 instruction misses, L1 data
misses, and L2 misses contributing roughly equally. Potential delays from the
pipeline (called “pipeline delay”) are most severe in SPECJBB and may arise
from its higher branch frequency.

Benchmark Per-thread CP} Per core CPI Effective CP! for eight cores Effective IPC for eight cores
TPC-C 7.2 L& 0.225 44
SPECIBB 5.6 1.40 0.175 5.7
SPECWeh9y 6.6 1.65 0.206 4.8

Figure 4.29 The per-thread CPJ, the per-core CPl, the effective eight-core CPI, and the effective IPC (inverse of
CPI) for the eight-core T1 processor.
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Figure 4.30 Breakdown of the status on an average thread. Executing indicates the
thread issues an instruction in that cycle. Ready but not chosen means it could issue,
but another thread has been chosen, and not ready indicates that the thread is awaiting
the completion of an event (a pipeline delay or cache miss, for example).
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Figure 4.31 The breakdown of causes for a thread being not ready.The contribution
to the “other” category varies. In TPC-C, store buffer full is the largest contributor; in
SPEC-JBB, atomic instructions are the largest contributor; and in SPECWeb99, both fac-
tors contribute.
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Performance of Multicore Processors on SPEC Benchmarks

Among recent processors, T1 is uniquely characterized by an intense focus on
thread-level parallelism versus instruction-level parallelism. It uses multithread-
ing to achieve performance from a simple RISC pipeline, and it uses multipro-
cessing with eight cores on a die to achieve high throughput for server
applications. In contrast. the dual-core Power5. Opteron, and Pentium D use both
multiple issue and multicore. Of course, exploiting significant ILP requires much
bigger processors, with the result being that fewer cores fit on a chip in compari-
son to T1. Figure 4.32 summarizes the features of these multicore chips.

In addition to the differences in emphasis on ILP versus TLP, there are several
other fundamental differences in the design.. Among the most important are

m There are significant differences in floating-point support and performance.
The PowerS puts a major emphasis on floating-point performance, the
Opteron and Pentium allocate significant resources, and the T1 almost
ignores it. As a result. Sun is unlikely to provide any benchmark results for
floating-point applications. A comparison that included only integer pro-
grams would be unfair to the three processors that include significant
floating-point hardware (and the silicon and power cost associated with it). In
contrast. a comparison using only floating-point applications would be unfair
to the T1.

m The multiprocessor expandability of these systems differs and that affects the
memory system design and the use of external interfaces. PowerS5 is designed

Characteristic SUNT1 AMD Opteron Intel Pentium D IBM Power5
Cores 8 2 2 2
Instruction 1ssues per clock per 1 3 3 4

Core

Multithreading Fine-grained No SMT SMT
Caches 16/8 64/64 12K uops/t6 64/32

.1 /D in KB per core 3 MB shared 1 MB/core I MB/core L2: 1.9 MB shared
1.2 per core/shared L3:36 MB
L3 (off-chip)

Peak memory bandwidth (DDR2 34.4 GB/sec 8.6 GB/sec 4.3 GB/sec 17.2 GB/sec
DRAMS)

Peak MIPS 9600 7200 9600 7600
IFLOPS 1200 4800 (w. SSE) 6400 (w. SSE) 7600
Clock rate (GHz) 1.2 24 3.2 1.9
lransistor count (M) 300 233 230 276

Die size (mm?) 379 199 206 389
Power (W) 79 116 130 125

Figure 4.32 Summary of the features and characteristics of four multicore processors.
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for the most expandability. The Pentium and Opteron design ofter limited
multiprocessor support. The T1 is not expandable to a larger system.

m The implementation technologies vary, making comparisons based on die
size and power more difficult.

m  There are significant differences in the assumptions about memory systems
and the memory bandwidth available. For benchmarks with high cache miss
rates, such as TPC-C and similar programs, the processors with larger mem-
ory bandwidth have a significant advantage.

Nonetheless, given the importance of the trade-off between [LP-centric and
TLP-centric designs, it would be useful to try to quantify the performance difter-
ences as well as the efficacy of the approaches. Figure 4.33 shows the perfor-
mance of the four multicore processors using the SPECRate CPU benchmarks,
the SPECJBB2005 Java business benchmark, the SPECWeb05 Web server
benchmark. and a TPC-C-like benchmark.

Figure 4.34 shows efficiency measures in terms of performance per unit die
area and per watt for the four dual-core processors, with the results normalized to
the measurement on the Pentium D. The most obvious distinction is the signifi-
cant advantage in terms of performance/watt for the Sun T1 processor on the
TPC-C-like and SPECJBBO0S benchmarks. These measurements clearly demon-
strate that for multithreaded applications, a TLP approach may be much more
power efficient than an ILP-intensive approach. This is the strongest evidence to
date that the TLP route may provide a way to increase performance in a power-
efficient fashion.
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Figure 4.33 Four dual-core processors showing their performance on a variety of
SPEC benchmarks and a TPC-C-like benchmark.All the numbers are normalized to the
Pentium D (which is therefore at 1 for all the benchmarks). Some results are estimates
from slightly larger configurations (e.g., four cores and two processors, rather than two
cores and one processor), including the Opteron SPECJBB2005 result, the Power5
SPECWeb05 result, and the TPC-C results for the Power5, Opteron, and Pentium D. At
the current time, Sun has refused! to release SPECRate results for either the integer or FP
portion of the suite.



4.9 Fallacies and Pitfalls 257

| P
SPECintRate/mm M

SIS
SPECintRate/Wal! joaememmemmmmenmssummnann
! B Powers+
RS
SPECfpRate/mm? ! Opteron
T I B s
SPECfpRate/watt
Es——

SPECJBBOS/MM lgppanmssmsmromsmenm s

e ——
SPECUBBOS/Wall |esssmmmmmanmn st S i e O A IO 5
&
Nom—
TPC-C/mM’ e rommasmssmns

TPC-Clwatt

o 05 10 15 20 25 30 35 40 45 50 55
Efficiency normalized to the Pentium D

Figure 4.34 Performance efficiency on SPECRate for four dual-core processors, nor-
malized to the Pentium D metric (which is always 1).

It is too early to conclude whether the TLP-intensive approaches will win
across the board. It typical server applications have enough threads to keep Tl
busy and the per-thread performance is acceptable, the T1 approach will be tough
to beat. If single-threaded performance remains important in server or desktop
environments. then we may see the market further fracture with significantly dif-
ferent processors for throughput-oriented environments and environments where
higher single-thread performance remains important.

4.9 Fallacies and Pitfalls

Pitfall

Given the lack of maturity in our understanding of parallel computing, there are
many hidden pitfalls that will be uncovered either by careful designers or by
unfortunate ones. Given the large amount of hype that has surrounded multi-
processors, especially at the high end. common fallacies abound. We have
included a selection of these.

Measuring performance of muitiprocessors by linear speedup versus execution
time.

“Mortar shot™ graphs—-plotting performance versus number of processors, show-
ing linear speedup, a plateau, and then « failing off—have long been used to
judge the success of parallel processors. Although speedup is one facet of a paral-
lel program, it is not a direct measure of performance. The first question is the
power of the processors being scaled: A program that linearly improves perfor-
mance to equal 100 Intel 486s may be slower than the sequential version on a
Pentium 4. Be especially careful of floating-point-intensive programs; processing
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Fallacy

elements without hardware assist may scale wonderfully but have poor collective
performance.

Comparing execution times is fair only if you are comparing the best algo-
rithms on each computer. Comparing the identical code on two computers may
seem fair, but it is not: the parallel program may be slower on a uniprocessor than
a sequentisl version. Developing a parallel program will sometimes lead to algo-
rithmic improvements, so that comparing the previously best-known sequential
programi with the parallel code—which seems fair—will not compare equivalent
algorithms. To refiect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used.

Results that suggest superlinear performance, when a program on n pro-
cessors is more than n times faster than the equivalent uniprocessor, may indicate
that the comparison is unfair, although there are instances where “real” superlin-
ear speedups have been encountered. For example. some scientific applications
regularly achieve superlinear speedup for small increases in processor count (2 or
4 to 8 or 16). These results usually arise because critical data structures that do
not fit into the aggregate caches of a multiprocessor with 2 or 4 processors fit into
the aggregate cache of a multiprocessor with 8 or 16 processors.

In sumimary. comparing performance by comparing speedups is at best tricky
and at worst misleading. Comparing the speedups for two different multiproces-
sors does not necessarily tell us anything about the relative performance of the
multiprocessors. Even comparing two ditferent algorithms on the same multipro-
cessor is tricky, since we must use true speedup, rather than relative speedup. to
obtain a vaiid comparison.

Amdahl's Law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s Law (see Sec-
tion 1.9; had been broken by an MIMD multiprocessor. This statement hardly
meant, hovever. that the law has been overturned for parallel computers: the
neglected portion of the program will sull limit performance. To understand the
basis of the media reports, Jet's see what Amdahl [ 1967} originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort
expended on achieving high parallel processing rates is wasted unless it is accom-
panied by achievements in sequential processing rates of very nearly the same
magnitude. [p. 483]

One interpretation of the law was that since portions of every program must he
sequential. there is a limit to the useful economic number of processors—say.
100. By skowing linear speedup with 1000 processors, this interpretation of
Amdahl’s Luaw was disproved.

The basis for the statement that Amdahl’s Law had been “overcome™ was the
use of scaled speedup. The researchers scaled the benchmark to have a data set
size that is 1000 times larger and compared the uniprocessor and parallel execu-
tion times of the scaled benchmark. For this particular algorithm the sequential
portion of the program was constant independent of the size of the input. and the
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rest was fully parallel—-hence, linear speedup with 1000 processors. Because the
running time grew faster than linear, the program actually ran longer after scal-
ing. even with 1000 processors.

Speedup that assumes scaling of the input is not the same as true speedup and
reporting it as if it were misleading. Since parallel benchmarks are often run on
different-sized mulitiprocessors. it is important to specify what type of application
scaling is permissible and how that scaling should be done. Although simply
scaling the data size with processor count is rarely appropriate, assuming a fixed
problem size for a much larger processor count is often inappropriate as well,
since it is likely that users given a much larger multiprocessor would opt to run a
larger or more detailed version of an application. In Appendix H, we discuss dif-
ferent methods for scaling applications for large-scale multiprocessors, introduc-
ing a model called time-constrained scaling, which scales the application data
size so that execution time remains constant across a range of processor counts.

Linear speedups are needed to make multiprocessors cost-effective.

It is widely recognized that one of the major benefits of parallel computing is to
offer a “shorter time to solution™ than the fastest uniprocessor. Many people,
however, also hold the view that paralle] processors cannot be as cost-effective as
uniprocessors unless they can achieve perfect linear speedup. This argument says
that because the cost ¢f the multiprocessor is a linear function of the number
of processors, anything less than linear speedup means that the ratio of
performance/cost decreases, making a paraliel processor less cost-effective than
using a uniprocessor.

The problem with this argument is that cost is not only a function of proces-
sor count, but also depends on memory. 1/O, and the overhead of the system (box,
power supply. interconnect, etc.).

The effect of including memory in the system cost was pointed out by Wood
and Hill [1995]. We use¢ an example based on more recent data using TPC-C and
SPECRate benchmarks. but the argument could also be made with a parallel sci-
entific application workload, which would likely make the case even stronger.

Figure 4.35 shows the speedup for TPC-C, SPECintRate and SPECfpRate on
an IBM eserver pS multiprocessor configurad with 4 to 64 processors. The figure
shows that only TPC-C achieves better than linear speedup. For SPECintRate and
SPECtpRate, speedup 1s less than linear, but so is the cost, since unlike TPC-C
the amount of main memory and disk required both scale less than linearly.

As Figure 4.36 shows, larger processor counts can actually be more cost-
effective than the four-processor configuration. In the future, as the cost of multi-
ple processors decreases compared to the cost of the support infrastructure (cabi-
nets, power supplies, fans. etc.). the performance/cost ratio of larger processor
configurations will improve further.

In comparing the cost-performance of two computers. we must be sure to
include accurate assessments of both total system cost and what performance is
achievable. For many applications with larger memory demands, such a compari-
son can dramatically increase the attractiveness of using a multiprocessor.
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Fallacy
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Figure 4.35 Speedup for three benchmarks on an IBM eserver p5 multiprocessor
when configured with 4, 8, 16, 32, and 64 processors. The dashed line shows linear
speedup.

Scalability is almost free.

The goal of scalable parailel computing was a focus of much of the research and
a significant segment of the high-end multiprocessor development from the mid-
1980s through the late 1990s. In the first half of that period. it was widely held
that you could build scalability into @ multiprocessor and then simply offer the
multiprocessor at any point on the scale from a small to large number of proces-
sors without sacrificing cost-cftectiveness. The ditficulty with this view is that
multiprocessors that scaie to larger processor counts require substantially more
investment (in both dollars anc design time) in the interprocessor communication
network, a» well as in aspects such as operating system support. rehability. and
reconfigurabiiity.

As an cxample, consider the Cray T3E. which used & 3D torus capable of
scaling to 2048 processors as an interconnection network. At 128 processors,
delivers a peak bisection bandwidih or 38.4 GB/sec, or 300 MB/sec per proces
sor. But for smaller configuraiions, the contemporaneous Compaq AlphaServer
ES40 could accept up to 4 precessors and has 5.6 GB/sec of interconnect band -
width. or almost four times the bandwidth per processor. Furthermore, the cost
per procescor in a Cray T3E is several times higher than the cost in the ES40).

Scalability 15 also not frec in software: To build software applications tha
scale requires significantly more attention to load balance. locality. potential con-
tention for shared resources, .nd the sertal (or partly paralleh portions of the
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Figure 4.36 The performance/cost relative to a 4-processor system for three bench-
marks run on an IBM eserver p5 multiprocessor containing from 4 to 64 processors
shows that the larger processor counts can be as cost-effective as the 4-processor
configuration. For TPC-C the configurations are those used in the official runs, which
means that disk and memory scale nearly linearly with processor count, and a 64-pro-
cessor machine is approximately twice as expensive as a 32-processor version. In con-
trast, the disk and memory are scaled more slowly (although still faster than necessary
to achieve the best SPECRate at 64 processors). In particular the disk configurations go
from one drive for the 4-processor version to four drives (140 GB) for the 64-processor
version. Memory is scaled from 8 GB for the 4-processor system to 20 GB for the 64-
processor system.

program. Obtaining scalability for real applications, as opposed to toys or small
kernels, across factors of more than five in processor count, is a major challenge.
In the future, new programming approaches, better compiler technology, and per-
formance analysis tools may help with this critical problem, on which little
progress has been made in 30 years.

Not developing the software to take advantage of, or optimize for, a multiproces-
sor architecture.

There is a long history of software lagging behind on massively parallel proces-
sors, possibly because the software problems are much harder. We give one
example to show the subtlety of the issues. but there are many examples we could
choose from!

One frequently encountered problem occurs when software designed for a
uniprocessor is adapted to a multiprocessor environment. For example. the SGI
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operating system originally protected the page table data structure with a single
lock, assuning that page allocation is infrequent. In a uniprocessor. this does
not represent a performance problem. In a multiprocessor, it can become a
major performance bottleneck for some programs. Consider a program that
uses a large number of pages that are initialized at start-up, which UNIX does
for statically allocated pages. Suppose the program is parallelized so that multi-
ple processes allocate the pages. Because page allocation requires the use of the
page table data structure. which is locked whenever it is in use. even an OS ker-
nel that allows multiple threads in the OS will be serialized if the processes all
try to allocate their pages at once (which is exactly what we might expect at ini-
tialization time!).

This page table serialization eliminates parallelism 1n initialization and has
significant impact on overall parallel performance. This performance bottle-
neck persists even under multiprogramming. For example, suppose we split the
parallel program apart into separate processes and run them, one process per
processor, so that there is no sharing between the processes. (This is exactly
what one user did. since he reasonably believed that the performance problem
was due to unintended sharing or interference in his application.) Unfortu-
nately. the lock still serializes all the processes—so even the multiprogramming
performance is poor. This pitfall indicates the kind of subtle but significant per-
formance bugs that can arisz when software runs on multiprocessors. Like
many other key software components, the OS algorithms and data structures
must be rethought in a multiprocessor context. Placing locks on smaller por-
tions of the page table effectively eliminates the problem. Similar problems
exist in memory structures, which increases the coherence traffic in cases
where no sharing is actually occurring.

Concluding Remarks

For more than 30 years. researchers and designers have predicted the end of uni-
processors and their dominance by multiprocessors. During this time period the
rise of microprocessors and their rapid performance growth has largely limited
the role of multiprocessing to limited market segments. In 2006, we are clearly at
an inflection point where multiprocessors and thread-level parallelism will play a
greater rol: across the entire computing spectrum. This change is driven by sev-
eral phenomena:

1. The use of parallel processing in some domains is much better understood.
First among these is the domain of scientific and engineering computation.
This application domain has an almost limitless thirst for more computation.
It also has many applications that have lots of natural parallelism. Nonethe-
less. it has not been easy: Programming parallel processors even for these
applicstions remains very challenging. as we discuss further in Appendix H.

2. The growth in server applications for transaction processing and Web ser-
vices. as well as multiprogrammed environments. has been enormous, and
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these applications have inherent and more easily exploited parallelism,
through the process:ng of independent threads

3. After almost 20 years of breakneck performance improvement, we are in the
region of diminishing returns for exploiting ILP, at least as we have known it.
Power issues, complexity, and increasing inefficiency has forced designers to
consider alternative approaches. Exploiting thread-level parallelism is the
next natural step.

4. Likewise, for the past 50 years, improvements in clock rate have come from
improved transistor speed. As we begin to see reductions in such improve-
ments both from technology limitations and from power consumption,
exploiting multiprocessor parallelism is increasingly attractive.

In the 1995 edition of this text, we concluded the chapter with a discussion of
two then-current controversial issues:

1. What architecture would very large-scale, microprocessor-based multiproces-
sors use?

2. What was the role for multiprocessing in the future of microprocessor archi-
tecture?

The intervening years have largely resolved these two questions.

Because very large-scale multiprocessors did not become a major and grow-
ing market. the only cost-effective way to build such large-scale multiprocessors
was to use clusters where the individual nodes are either single microprocessors
or moderate-scale. shared-memory multiprocessors. which are simply incorpo-
rated into the design. We discuss the design of clusters and their interconnection
in Appendices E and H.

The answer to the second question has become clear only recently, but it has
become astonishingly clear. The future performance growth in microprocessors,
at least for the next five years, will almost certainly come from the exploitation of
thread-level parallelism through multicore processors rather than through exploit-
ing more ILP. In fact, we are even seeing designers opt to exploit less ILP in
future processors. instead concentrating their attention and hardware resources
on more thread-level parallelism. The Sun T1 is a step in this direction, and in
March 2006, Intel announced that its next round of multicore processors would
be based on a core that is less aggressive in exploiting ILP than the Pentium 4
Netburst core. The best balance between 1LP and TLP will probably depend on a
variety of factors including the applications mix.

In the 1980s and 1990s, with the birth and development of ILP, software in
the form of optimizing compilers that could exploit ILP was key to its success.
Similarly, the successful exploitation of thread-level parallelism will depend as
much on the development of suitable software systems as it will on the contribu-
tions of computer architects. Given the slow progress on parallel software in the
past thirty-plus years. it is likely that exploiting thread-level parallelism broadly
will remain challenging for years to come.
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4.1

Historical Perspective and References

Section K5 on the companion CD looks at the history of multiprocessors and
parallel processing. Divided by both time period and architecture, the section
includes discussions on early experimental multiprocessors and some of the great
debates in parallel processing. Recent advances are also covered. References for
further reading are included.

Case Studies with Exercises by David A.Wood

Case Study 1:Simple, Bus-Based Multiprocessor

Concepts illustrated by this case study

= Snooping Coherence Protocol Transitions
n  Coherence Protocol Performance
s Coherence Protocol Optimizations

= Synchronization

The simple, bus-based multiprocessor illustrated in Figure 4.37 represents a com-
monly implemented symmetric shared-memory architecture. Each processor has
a single, private cache with coherence maintained using the snooping coherence
protocol of Figure 4.7. Each cache is direct-mapped, with four blocks each hold-
ing two words. To simplify the illustration, the cache-address tag contains the full
address and each word shows only two hex characters, with the least significant
word on the right. The coherence states are denoted M. S, and I for Modified.
Shared, and Invalid.

[10/10/10/10/10/10/10] <4.2> For each part of this exercise, assume the initial
cache and memory state as illustrated in Figure 4.37. Each part of this exercise
specifies a sequence of one or more CPU operations of the form:

P#: <op> <address> [ <-- <value> ]

where P# designates the CPU (e.g., PO), <op> is the CPU operation (e.g., read or
write), <address> denotes the memory address, and <value> indicates the new
word to be assigned on a write operation.

Treat each action below as independently applied to the initial state as given in
Figure 4.37. What is the resulting state (i.e., coherence state, tags, and data) of
the caches and memory after the given action? Show only the blocks that change,
for example, P0.B0: (I, 120, 00 01) indicates that CPU PO’s block B0 has the
final state of 1, tag of 120, and data words 00 and O1. Also, what value is returned
by each read operation?

a. [10] <4.2>P0: read 120
b. [10] <4.2>P0: write 120 <-- 80
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Figure 4.37 Bus-based snooping multiprocessor.

¢. [10]<4.2>P15: write 120 <-- 80
d. [10]<4.2>P1l: read 110

e. [10]<4.2>P0: write 108 <-- 48
f. [10}<4.2>P0: write 130 <-- 78
g. [10] <4.2>P15: write 130 <-- 78

[20/20/20/20} <4.3> The performance of a snooping cache-coherent multiproces-
sor depends on many detailed implementation issues that determine how quickly
a cache responds with data in an exclusive or M state block. In some implementa-
tions, a CPU read miss to a cache block that is exclusive in another processor’s
cache is faster than a miss to a block in memory. This is because caches are
smaller, and thus faster, than main memory. Conversely, in some implementa-
tions, misses satisfied by memory are faster than those satisfied by caches. This is
because caches are generally optimized for “front side” or CPU references, rather
than “back side” or snooping accesses.

For the multiprocessor illustrated in Figure 4.37, consider the execution of a
sequence of operations on a single CPU where

# CPU read and write hits generate no stall cycles.

» CPU read and write misses generate Nyepory and Negepe stall cycles if sat-
isfied by memory and cache, respectively.
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m  CPU write hits that generate an invalidate incur Ny, jidace Stall cycles.

m a writeback of a block, either due to a conflict or another processor’s re-
quest to an exclusive block, incurs an additional Ny, jepack Stall cycles.

Consider two implementations with different performance characteristics sum-
marized in Figure 4.38.

Consider the following sequence of operations assuming the initial cache state in
Figure 4.37. For simplicity, assume that the second operation begins after the first
completes (even though they are on different processors):

P1: read 110
P15: read 110

For Implementation 1. the first read generates 80 stall cycles because the read is
satisfied by PO’s cache. P1 stalls for 70 cycles while it waits for the block, and PO
stalls for 10 cycles while it writes the block back to memory in response to P1’s
request. Thus the second read by P15 generates 100 stall cycles because its miss
is satisfied by memory. Thus this sequence generates a total of 180 stall cycles.

For the following sequences of operations, how many stall cycles are generated
by each implementation?

a. [20]<4.3> PO: read 120
PO: read 128
PO: read 130
b. [20] <4.3> P0O: read 100
PO: write 108 <-- 48
PO: write 130 <-- 78
¢. [20]<4.3> Pl: read 120
Pl: read 128
P1: read 130
d. [20] <4.3> Pl: read 100
P1: write 108 <-- 48
Pl: write 130 <-- 78

Parameter Implementation 1 Implementation 2
NXTN’.‘I“OI’} l 00 100
Ncache 70 130
Nin\’i\lidaw 15 15
Nwrileback 10 10

Figure 4.38 Snooping coherence latencies.



43

44

45

Case Studies with Iixercises by David A. Wood 267

[20] <4.2> Many snooping coherence protocols have additional states, state tran-
sitions, or bus transactions to reduce the overhead of maintaining cache coher-
ency. In Implementaticn [ of Exercise 4.2, nusses are incurring fewer stall cycles
when they are supplied by cache than when they are supplied by memory. Some
coherence protocols try to improve performance by increasing the frequency of
this case.

A common protocol optimization is to introduce an Owned state (usually denoted
0O). The Owned state behaves like the Shared state, in that nodes may only read
Owned blocks. But it behaves like the Mcdified state, in that nodes must supply
data on other nodes’ rzad and write misses o Owned blocks. A read miss (o a
block in either the Modified or Owned staies supplies data to the requesting node
and transitions to the Owned state. A write miss to a block in either state Modi-
fied or Owned supplies data 1o the requesting node and transitions to state
Invalid. This optimized MOSI protocol only updates memory when a node
replaces a block in state Modified or Owned.

Draw new protocol diagrams with the additional state and transitions.

[20/20/20/20] <4.2>> For the following code sequences and the timing parameters
for the two implementations in Figure 4.38. compute the total stall cycles for the
base MSI protocol and the optimized MOSI protocol in Exercise 4.3. Assume
state transitions that do not require bus transactions incur no additional stall
cycles.

a. [20]<4.2> Pl: read 110
P15: read 110
P0: read 110
b. [20]<4.2> P1l: read 120
P15: read 120
PC: read 120
c. [20]<4.2> PO: write 120 <-- 80
P15: read 120
PG: read 120
d. [20]<4.2> PO: write 108 <-- 88
P15: read 108
PO: write 108 <-- 98

[20] <4.2> Some upplications read a large data set first, then modify most or all
of it. The base MSI coherence protocol will first fetch all of the cache blocks in
the Shared state. and then be forced to perform an invalidate operation to upgrade
them to the Modified state. The additional delay has a significant impact on some
workloads.
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An additional protocol optimization eliminates the need to upgrade blocks that
are read and later written by a single processor. This optimization adds the Exclu-
sive (E) state to the protocol, indicating that no other node has a copy of the
block, but it has not yet been modified. A cache block enters the Exclusive state
when a read miss is satisfied by memory and no other node has a valid copy. CPU
reads and writes to that block proceed with no further bus traffic, but CPU writes
cause the coherence state to transition to Modified. Exclusive differs from Modi-
fied because the node may silently replace Exclusive blocks (while Modified
blocks must be written back to memory). Also, a read miss to an Exclusive block
results in a transition to Shared, but does not require the node to respond with
data (since memory has an up-to-date copy).

Draw new protocol diagrams for a MESI protocol that adds the Exclusive state
and transitions to the base MSI protocol’s Modified. Shared, and Invalidate
states.

[20/20/20/20/20] <4.2> Assume the cache contents of Figure 4.37 and the timing
of Implementation 1 in Figure 4.38. What are the total stall cycles for the follow-
ing code sequences with both the base protocol and the new MESI protocol in
Exercise 4.57 Assume state transitions that do not require bus transactions incur
no additional stall cycles.

a. [20]<4.2> PO: read 100

PO: write 100 <-- 40
b. [20] <4.2> PO: read 120

PO: write 120 <-- 60
¢. [20]<4.2> PO: read 100

PO: read 120
d. [20]<4.2> PO: read 100

Pl: write 100 <-- 60
e. {201 <4.2> PO: read 100

PO: write 100 <-- 60

P1l: write 100 <-- 40

[20/20/20/20] <4.5> The test-and-set spin lock is the simplest synchronization
mechanism possible on most commercial shared-memory machines. This spin
lock relies on the exchange primitive to atomically load the old value and store a
new value. The lock routine performs the exchange operation repeatedly until it
finds the lock unlocked (i.e., the returned value is 0).

tas: DADDUI R2,R0,#1
lockit: EXCH R2,0(R1)
BNEZ R2, Tlockit

Unlocking a spin lock simply requires a store of the value 0.
unlcck:  SW RO,0(R1)
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As discussed in Section 4.7, the more optimized test-and-test-and-set lock uses a
load to check the lock. allowing it to spin with a shared variable in the cache.

tatas: LD R2, 0(R1)
BNEZ R2, tatas
DADDUI R2,R0,#1
EXCH R2,0(R1)
BNEZ R2, tatas

Assume that processors PO, P1, and P15 are all trying to acquire a lock at address
0x100 (i.e., register R1 holds the value 0x100). Assume the cache contents from
Figure 4.37 and the timing parameters\from Implementation | in Figure 4.38. For
simplicity, assume the critical sections are 1000 cycles long.

a. [20] <4.5> Using the test-and-set spin lock, determine approximately how
many memory stall cycles each processor incurs before acquiring the lock.

b. [20] <4.5> Using the test-and-test-and-set spin lock, determine approxi-
mately how many memory stall cycles each processor incurs before acquiring
the lock.

C. [20] <4.5> Using the test-and-set spin lock, approximately how many bus
transactions occur?

d. [20] <4.5> Using the test-and-test-and-set spin lock, approximately how
many bus transactions occur?

Case Study 2: A Snooping Protocol for a Switched Network

Concepts illustrated by this case study

m  Snooping Coherence Protocol Implementation
m  Coherence Protocol Performance
s Coherence Protocol Optimizations

s  Memory Consistency Models

The snooping coherence protocols in Case Study 1 describe coherence at an
abstract level, but hide many essential details and implicitly assume atomic
access to the shared bus to provide correct operation. High-performance snoop-
ing systems use one or more pipelined, switched interconnects that greatly
improve bandwidth but introduce significant complexity due to transient states
and nonatomic transactions. This case study examines a high-performance
snooping system, loosely modeled on the Sun E6800, where multiple processor
and memory nodes are connected by separate switched address and data net-
works.

Figure 4.39 illustrates the system organization (middle) with enlargements of
a single processor node (left) and a memory module (right). Like most high-
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Figure 4.39 Snooping system with switched interconnect.

performance shared-memory systems, this system provides multiple memory
modules to increase memory bandwidth. The processor nodes contain a CPU,
cache, and a cache controller that implements the coherence protocol. The CPU
issues read and write requests to the cache controller over the REQUEST bus and
sends/receives data over the DATA bus. The cache controller services these
requests locally, (i.e., on cache hits) and on a miss issues a coherence request
(e.g.. GetShared to request a read-only copy, GetModified to get an exclusive
copy) by sending it to the address network via the ADDR_OUT queue. The
address network uses a broadcast tree to make sure that all nodes see all coher-
ence requests in a total order. All nodes, including the requesting node, receive
this reques: in the same order (but not necessarily the same cycle) on the
ADDR_IN queue. This total order is essential to ensure that all cache controllers
act in concert to maintain coherency.

The protocol ensures that at most one node responds, sending a data message
on the separate, unordered point-to-point data network.

Figure 4.40 presents a (simplified) coherence protocol for this system in tabu-
lar form. Tables are commonly used to specify coherence protocols since the
multitude of states makes state diagrams too ungainly. Each row corresponds to a
block’s coherence state, each column represents an event (e.g., a message arrival
or processor operation) affecting that block, and each table entry indicates the
action and new next state (if any). Note that there are two types of coherence
states. The stable states are the familiar Modified (M), Shared (S), or Invalid (I)
and are stored in the cache. Transient states arise because of nonatomic transi-
tions between stable coherence states. An important source of this nonatomicity
arises because of races within the pipelined address network and between the
address and data networks. For example, two cache controllers may send request
messages in the same cycle for the same block, but may not find out for several
cycles how the tie is broken (this is done by monitoring the ADDR_IN queue, to
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Figure 4.40 Broadcast snooping cache controller transitions.

see in which order the requests arrive). Cache controllers use transient states to
remember what has transpired in the past while they wait for other actions to
occur in the future. Transient states are typically stored in an auxiliary structure
such as an MSHR, rather than the cache itself. In this protocol, transient state
names encode their initial state, their intended state, and a superscript indicating
which messages are still outstanding. For example, the state IS” indicates that the
block was in state I, wants to become state S, but needs to see its own request
message (i.e., GetShared) arrive on the ADDR_IN queue before making the tran-
sition.

Events at the cache controller depend on CPU requests and incoming request
and data messages. The OwnReq event means that a CPU’s own request has
arrived on the ADDR_IN queue. The Replacement event is a pseudo-CPU event
generated when a CPU read or write triggers a cache replacement. Cache control-
ler behavior is detailed in Figure 4.40, where each entry contains an <action/next
state> tuple. When the current state of a block corresponds to the row of the entry
and the next event corresponds to the column of the entry, then the specified
action is performed and the state of the block is changed to the specified new
state. If only a next state is listed, then no action is required. If no new state is
listed, the state remains unchanged. Impossible cases are marked “error” and



272

Chapter Four Multiprocessors and Thread-Level Parallelism

4.8

represent error conditions. “z”" means the requested event cannot currently be
processed, and “—” means no action or state change is required.

The following example illustrates the basic operation of this protocol.
Assume that PO attempts a read to a block that is in state I (Invalid) in all caches.
The cache controller’s action—determined by the table entry that corresponds to
state I and event “read”—is “send GetS/ISAP” which means that the cache con-
troller should issue a GetS (i.e., GetShared) request to the address network and
transition to transient state ISA! to wait for the address and data messages. In the
absence of contention, PO’s cache controller will normally receive its own GetS
message first, indicated by the OwnReq column, causing a transition to state ISP.
Other cache controllers will handle this request as “Other GetS” in state I. When
the memory controller sees the request on its ADDR_IN queue, it reads the block
from memory and sends a data message to PO. When the data message arrives at
P0’s DATA _IN queue, indicated by the Data column, the cache controller saves
the block i the cache, performs the read. and sets the state to S (i.e., Shared).

A somewhat more complex case arises if node P1 holds the block in state M.
In this case. P1’s action for “Other GetS™ causes it to send the data both to PO and
to memory, and then transition to state S. PO behaves exactly as before, but the
memory must maintain enough logic or state to (1) not respond to PO’s request
(because P1 will respond) and (2) wait-to respond to any future requests for this
block until it receives the data from P1. This requires the memory controller to
implement its own transient states (not shown). Exercise 4.11 explores alternative
ways to implement this functionality.

More complex transitions occur when other requests intervene or cause
address anc data messages to arrive out of order. For example, suppose the cache
controller in node PO initiates a writeback of a block in state Modified. As Figure
4.40 shows, the controller does this by issuing a PutModified coherence request
to the ADDR_OUT queue. Because of the pipelined nature of the address net-
work, node PO cannot send the data until it sees its own request on the ADDR_IN
queue and determines its place in the total order. This creates an interval, called a
window of vulnerability, where another node’s request may change the action that
should be taken by a cache controller. For example, suppose that node P1 has
issued a GetModified request (i.e., requesting an exclusive copy) for the same
block that arrives during PO’s window of vulnerability for the PutModified
request. In this case, P1’s GetModified request logically occurs before PO’s Put-
Modified request, making it incorrect for PO to complete the writeback. PO’s
cache controller must respond to P1’s GetModified request by sending the block
to P1 and invalidating its copy. However, P0’s PutModified request remains pend-
ing in the address network, and both PO and P1 must ignore the request when it
eventually arrives (node PO ignores the request since its copy has already been
invalidated: node P! ignores the request since the PutModified was sent by a dif-
ferent node).

[10/10/10/10/10/10/10] <4.2> Consider the switched network snooping protocol
described above and the cache contents from Figure 4.37. What are the sequence
of transient states that the affected cache blocks move through in each of the fol-
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lowing cases for each of the affected caches? Assume that the address network
latency is much less than the data network latency.

{10] <4.2>P0: read 120

110] <4.2>P0: write 120 <-- 80
[10] <4.2> P15: write 120 <-- 80
{101 <4.2>P1: read 110

[10] <4.2> PO: write 108 <-- 48
[10] <4.2> P0: write 130 <-- 78
. [10] <4.2> P15: write 130 <-- 78

[15/15/15/15/15/15/15] <4.2> Consider the switched network snooping protocol
described above and the cache contents from Figure 4.37. What are the sequence
of transient states that the affected cache blocks move through in each of the fol-
lowing cases? In all cases, assume that the processors issue their requests in the
same cycle, but the address network orders the requests in top-down order. Also
assume that the data network is much slower than the address network, so that the
first data response arrives after all address messages have been seen by all nodes.

a. [15)<4.2> PO: read 120
Pl: read 120
b. {15]<4.2> PO: read 120
Pl: write 120 <-- 80

c. [15]<4.2> PO: write 120 <-- 80
P1: read 120

d. [15]<4.2> PO: write 120 <-- 80
Pl: write 120 <-- 90
e. [15]1<4.2> PO: replace 110
Pl: read 110
f. {15]<4.2> Pl: write 110 <-- 80
PO: replace 110
g. [15]<4.2> P1l: read 110
PO: replace 110

[20/20/20/20/20/20/20] <4.2, 4.3> The switched interconnect increases the per-
formance of a snooping cache-coherent multiprocessor by allowing multiple
requests to be overlapped. Because the controllers and the networks are pipe-
lined, there is a difference between an operation’s latency (i.e., cycles to com-
plete the operation) and overhead (i.e., cycles until the next operation can begin).

@ m o a0 ge

For the multiprocessor illustrated in Figure 4.39, assume the following latencies
and overheads:
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CPU read and write hits generate no stall cycles.

A CPU read or write that generates a replacement event issues the corre-
sponding GetShared or GetModified message before the PutModified
message (e.g., using a writeback buffer).

A cache controller event that sends a request message (e.g.. GetShared)
has latency L and blocks the controller from processing other events
for O

A cache controller event that reads the cache and sends a data message has
latency Leng dara and overhead Ogpg o CYCleS.

send_req

send_req C}'CICS.

A cache controller event that receives a data message and updates the

cache has latency L and overhead O

rcv_data rcv_data*

A memory controller has latency Li.aq memory and overhead O
cycles to read memory and send a data message.

read_memory

A memory controller has latency Ly i memory and overhead Oyiice memory
cycles to write a data message to memory.

In the absence of contention, a request message has network latency

Lieq msg and overhead O,y 1, Cycles.

In the absence of contention, a data message has network latency Ly, my
and overhead Ogyyqy_meg CYCleS.

Consider an implementation with the performance characteristics summarized in
Figure 4.41.

For the following sequences of operations and the cache contents from Figure
Figure 4.37 and the implementation parameters in Figure 4.41, how many stall
cycles does each processor incur for each memory request? Similarly, for how
many cycles are the different controllers occupied? For simplicity. assume (1)
each processor can have only one memory operation outstanding at a time, (2) if
two nodes make requests in the same cycle and the one listed first “wins,” the

Implementation 1

Action Latency Overhead
send_req 4 1
send_data 20

rcv_data 15

read_memory 100 20
write_memory 100 20
req_msg 8 |
data_msg 30 5

Figure 4.41 Switched snooping coherence latencies and overheads.
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later node must stall for the request message overhead, and (3) all requests map
to the same memory controller.

a. [20]1<4.2,4.3> PC: read 120
b. [20]<4.2,4.3> PC: write 120 <-- 80
¢ [20]<4.2,4.3> P15: write 120 <-- 80
d. [20]<4.2,4.3> P1: read 110
e. |20} <4.2,4.3> P0O: read 120
P15: read 128
f. [20] <4.2,4.3> P0O: read 100
P1: write 110 x-- 78
[20] <4.2,4.3> PQ: write 100 <-- 28
Pi: write 100 <-- 48

[25/25] <4.2, 4.4> The switched snooping protocol of Figure 4.40 assumes that
memory “knows” whether a processor node is in state Modified and thus will
respond with data. Real systems implement this in one of two ways. The first way
uses a shared “Owned” signal. Processors assert Owned if an “Other GetS” or
“Other GetM” event finds the block in state M. A special network ORs the indi-
vidual Owned signals together; if any processor asserts Owned, the memory con-
troller ignores the request. Note that in a nonpipelined interconnect, this special
network is trivial (i.e.. it is an OR gate).

@

However, this network becomes much more complicated with high-performance
pipelined interconnects. The second alternative adds a simple directory to the
memory controller (e.g., 1 or 2 bits) that tracks whether the memory controller is
responsible for responding with data or whether a processor node is responsible
for doing so.

a. [25]<4.2, 4.4> Use a table to specify the memory controller protocol needed
to implement the second alternative. For this problem, ignore the PUTM mes-
sage that gets sent on a cache replacernent.

b. [25] <4.2, 4.4> Explain what the memory controller must do to support the
following sequence, assuming the initial cache contents of Figure 4.37:

P1: read 110
P15: read 110

[30] <4.2> Exercise 4.3 asks you to add the Owned state to the simple MSI
snooping protocol. Repeat the question, but with the switched snooping protocol
above.

[30] <4.2> Exercise 4.5 asks you to add the Exclusive state to the simple MSI
snooping protocol. Discuss why this is much more difficult to do with the
switched snooping protocol. Give an exaraple of the kinds of issues that arise.
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4.15

{20/20/20/20] <4.6> Sequential consistency (SC) requires that all reads and
writes appear to have executed in some total order. This may require the proces-
sor to stall in certain cases before committing a read or write instruction. Con-
sider the foliowing code sequence:

write A
read B

where the write A results in a cache miss and the read B results in a cache hit.
Under SC, the processor must stall read B until after it can order (and thus per-
form) write A. Simple implementations of SC will stall the processor until the
cache receives the data and can perform the write.

Weaker consistency models relax the ordering constraints on reads and writes,
reducing the cases that the processor must stall. The Total Store Order (TSO)
consistency model requires that all writes appear to occur in a total order, but
allows a processor’s reads to pass its own writes. This allows processors to imple-
ment write buffers, which hold committed writes that have not yet been ordered
with respect to other processor’s writes. Reads are allowed to pass (and poten-
tially bypass) the write buffer in TSO (which they could not do under SC).

Assume that one memory operation can be performed per cycle and that opera-
tions that hit in the cache or that can be satisfied by the write buffer introduce no
stall cycles. Operations that miss incur the latencies listed in Figure 4.41. Assume
the cache contents of Figure 4.37 and the base switched protocol of Exercise 4.8.
How many stall cycles occur prior to each operation for both the SC and TSO
consistency models?

a. [20] <4.6> PO:

write 110 <-- 80

PO: read 108

b. [20] <4.6> PO: write 100 <-- 80
PO: read 108

c. [20]<4.6> PO: write 110 <-- 80
PO: write 100 <-- 90

d. [20] <4.6> PO: write 100 <-- 80
PO: write 110 <-- 90

[20/20] <4.6:> The switched snooping protocol above supports sequential consis-
tency in part by making sure that reads are not performed while another node has
a writeable block and writes are not performed while another processor has a
writeable block. A more aggressive protocol will actually perform a write opera-
tion as soon as it receives its own GetModified request, merging the newly writ-
ten word(s) with the rest of the block when the data message arrives. This may
appear illegal, since another node could simultaneously be writing the block.
However, the global order required by sequential consistency is determined by
the order of coherence requests on the address network, so the other node’s
write(s) will be ordered before the requester’s write(s). Note that this optimiza-
tion does not change the memory consistency model.
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Assuming the parameters in Figure 4.41:
a. {20] <4.6> How significant would this optimization be for an in-order core?

b. {20] <4.6> How «ignificant would this optimization be for an out-of-order

core?

Case Study 3: Simple Directory-Based Coherence

Concepts illustrated by this case study

s Directory Coherence Protocol Transitions
s Coherence Protocol Performance

s Coherence Protocol Optimizations

Consider the distributed shared-memory system illustrated in Figure 4.42. Each
processor has a single direct-mapped cache that holds four blocks each holding two
words. To simplify the illustration, the cache address tag contains the full address
and each word shows only two hex characters, with the least significant word on
the right. The cache states are denoted M, S, and I for Modified, Shared, and
Invalid. The directory states are denoted DM, DS, and DI for Directory Modified,

PO & 4] &8 P15 &
¢ & & &P
e‘o @6% 0"7}\ &%6 ?:‘00 @(ﬂg
S & S & & & & & &
1100 |00{10 i {100 | 00;10 S}120 | 0020
S| 108 | 0008 M| 128 | 00 : 68 S| 108 | 00} 08
M| 110 | 0030 {110 {0010 {110 |00} 10
I} 118 | 0010 S| 118 |00 ;18] || 118 | 0010
] | |
( Switched network with point-to-point order
'
Memory Owner/

Address State sharers  Data

100 | DI 00 | 00

108 |DS| PC.P15 | 00 | 08

110 |DM| PG 0010

118 [DS| P1 0018

120 |DS| P15 00} 20

128 |DM| P1 0028

130 | DI 00 | 30

Figure 4.42 Multiprocessor with directory cache coherence.
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Directory Shared, and Directory Invalid. The simple directory protocol is described
in Figures 4.21 and 4.22.

[10/10/10/10/15/15/15/15] <4.4> For each part of this exercise, assume the initial
cache and memory state in Figure 4.42. Each part of this exercise specifies a
sequence of one or more CPU operations of the form:

P#: <op> <address> [ <-- <value> ]

where P# designates the CPU (e.g., P0), <op> is the CPU operation (e.g.. read or
write), <address> denotes the memory address, and <value> indicates the new
word to be assigned on a write operation.

What is the final state (i.e., coherence state, tags, and data) of the caches and
memory after the given sequence of CPU operations has completed? Also, what
value is returned by each read operation?

[10] <4.4> PO: read 100
[10] <4.4> PO: read 128
[10] <4.4> PO: write 128 <-- 78
[10] <4.4> PO: read 120
[15]1<4.4> PO: read 120
P1: read 120
f. [15]<4.4> PO: read 120
Pl: write 120 <-- 80
g. [15]<4.4> PO: write 120 <-- 80
Pl: read 120
h. [15]<4.4> PO: write 120 <-- 80
Pl: write 120 <-- 90

[10/10/10/10] <4.4> Directory protocols are more scalable than snooping proto-
cols because they send explicit request and invalidate messages to those nodes
that have copies of a block, while snooping protocols broadcast all requests and
invalidates to all nodes. Consider the 16-processor system illustrated in Figure
4.42 and assume that all caches not shown have invalid blocks. For each of the
sequences below, identify which nodes receive each request and invalidate.

a. [10]<4.4>P0: write 100 <-- 80
b. [10] <4.4>P0: write 108 <-- 88
c. [10]<4.4>P0: write 118 <-- 90
d. [10] <4.4>P1: write 128 <-- 98

[25] <4.4> Exercise 4.3 asks you to add the Owned state to the simple MSI
snooping protocol. Repeat the question, but with the simple directory protocol
above.

® an o o
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[25] <4.4> Exercise 4.5 asks you to add the Exclusive state to the simple MSI
snooping protocol. Discuss why this is much more difficult to do with the simple
directory protocol. Give an example of the kinds of issues that arise.

Case Study 4: Advanced Directory Protocol

Concepts illustrated by this case study

m Directory Coherence Protocol Implementation
m  Coherence Protocol Performance

m  Coherence Protocol Optimizations

The directory coherence protocol in Case Study 3 describes directory coherence
at an abstract level, but assumes atomic transitions much like the simple snooping
system. High-performance directory systems use pipelined, switched intercon-
nects that greatly improve bandwidth but also introduce transient states and non-
atomic transactions. Directory cache coherence protocols are more scalable than
snooping cache coherence protocols for two reasons. First, snooping cache
coherence protocols broadcast requests to all nodes, limiting their scalability.
Directory protocols use a level of indirection—a message to the directory—to
ensure that requests are only sent to the nodes that have copies of a block. Sec-
ond. the address network of a snooping system must deliver requests in a total
order, while directory protocols can relax this constraint. Some directory proto-
cols assume no network ordering, which is beneficial since it allows adaptive
routing techniques to improve network bandwidth. Other protocols rely on point-
to-point order (i.e., messages from node PO to node P1 will arrive in order). Even
with this ordering constraint, directory protocols usually have more transient
states than snooping protocols. Figure 4 43 presents the cache controller state
transitions for a simplified directory protocol that relies on point-to-point net-
work ordering. Figure 4.44 presents the directory controller’s state transitions.
For each block, the directory maintains a state and a current owner field or a cur-
rent sharers list (if any).

Like the high-performance snooping protocol presented earlier, indexing the
row by the current state and the column by the event determines the <action/next
state> tuple. If only a next state is listed. then no action is required. Impossible
cases are marked “error’” and represent error conditions. “z” means the requested
event cannot currently be processed.

The following example illustrates the basic operation of this protocol. Sup-
pose a processor attempts a write to a block in state I (Invalid). The correspond-
ing tuple is “send GetM/IMAP” indicating that the cache controller should send a
GetM (GetModified) request to the directory and transition to state IMAP. In the
simplest case, the request message finds the directory in state DI (Directory
Invalid), indicating that no other cache has a copy. The directory responds with a
Data message that also contains the number of acks to expect (in this case zero).
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Replace- Forwarded_ Forwarded_ PutM
State Read Write ment INV GetS GetM _Ack Data Last ACK
I send GetS/ send GetM/ error send error error error  error error
ISP IMAD Ack/l
S do Read send GetM/ 1 send error error error  error error
IMAD Ack/
M do Read do Write send PutM/ error send Data, send Data/l error  error error
MIA send PutMS
/MSA
ISP z z z send Ack/ error error error  save error
ISIP Data, do
Read/S
IsSIP 2 z z send Ack error error error  save error
Data, do
Read/1
IMAP 7 z z send Ack error error error save Data error
M4
MA z z z error IMSA MIA error error  do Write/M
IMI* 2 z z error error error error  error do Write,
send Data/I
IMS? 2 z z send Ack/ z z error  error do Write,
MIA send
Data/S
MS? do Read z z error send Data send Data /S error error
MIA
MIA 2z z z error send Data send Data/l 11 error error
Figure 4.43 Broadcast snooping cache controller transitions.
PutM PutMs PutM PutMs
State GetS GetM (owner) (nonowner) (owner) (nonowner)
DI send Data, add to  send Data, clear error send PutM_Ack error send PutM_Ack
sharers/DS sharers, set owner/
DM
DS send Data, add to  send INVs to sharers, error send PutM_Ack error send PutM_Ack
sharers/DS clear sharers, set
owner, send Data/DM
DM forward GetS, add forward GetM, send  save Data, send send PutM_Ack save Data. send PutM_Ack
to sharers/DMSP  INVs to sharers, clear  PutM_Ack/DI add to
sharers, set owner sharers, send
PutM_Ack/
DS
DMSP  forward GetS,add forward GetM, send  save Data, send send PutM_Ack save Data, send PutM_Ack
to sharers INVs to sharers, clear PutM_Ack/DS add to
sharers, set owner/ sharers, send
DM PutM_Ack/
DS

Figure 4.44 Directory controller transitions.
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In this simplified protocol, the cache controller treats this single message as two
messages: a Data message, followed by a Last Ack event. The Data message is
processed first, saving the data and transitioning to IM®. The Last Ack event is
then processed, transitioning to state M. Finally, the write can be performed in
state M.

If the GetM finds the directory in state DS (Directory Shared), the directory
will send Invalidate (INV) messages to all nodes on the sharers list, send Data to
the requester with the number of sharers. and transition to state M. When the INV
messages arrive at the sharers, they will either find the block in state S or state I
(if they have silently invalidated the block). In either case. the sharer will send an
ACK directly to the requesting node. The requester will count the Acks it has
received and compare that to the number sent back with the Data message. When
all the Acks have arrived, the Last Ack event occurs, triggering the cache to tran-
sition to state M and allowing the write to proceed. Note that it is possible for all
the Acks to arrive before the Data message, but not for the Last Ack event to
occur. This is because the Data message contains the ack count. Thus the protocol
assumes that the Data message is processed before the Last Ack event.

[10/10/10/10/10/10] <4.4> Consider the advanced directory protocol described
above and the cache contents from Figure 4.20. What are the sequence of tran-
sient states that the affected cache blocks move through in each of the following
cases?

a. [10]<4.4>P0: read 100
b. [10] <4.4>P0: read 120
[10] <4.4>P0: write 120 <-- 80
[10] <4.4> P15: write 120 <-- 80
[10] <4.4>P1: read 110
{10] <4.4>P0: write 108 <-- 48

[15/15/15/15/15/15/15] <4.4> Consider the advanced directory protocol
described above and the cache contents from Figure 4.42. What are the sequence
of transient states that the affected cache blocks move through in each of the fol-
lowing cases? In all cases, assume that the processors issue their requests in the
same cycle, but the directory orders the requests in top-down order. Assume that
the controllers’ actions appear to be atomic (e.g., the directory controller will per-
form all the actions required for the DS --> DM transition before handling
another request for the same block).

a. [15]<4.4> PO: read 120

Pl: read 120
b. [15]<4.4> PQO: read 120

Pl: write 120 <-- 80
c. [15]<4.4> PO: write 120

P1: read 120

=~ 0o o n
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d. [15]<4.4> PO: write 120 <-- 80

P1: write 120 <-- 90

e. [15]<4.4> PO: replace 110

P1: read 110

f [15]<4.4> Pl: write 110 <-- 80

PO: replace 110

g. [15]<4.4> P1l: read 110

PO: replace 110

4.22  [20/20/20/20/20] <4.4> For the multiprocessor illustrated in Figure 4.42 imple-
menting the protocol described in Figure 4.43 and Figure 4.44, assume the follow-
ing latencies:

CPU read and write hits generate no stall cycles.

Completing a miss (i.e.. do Read and do Write) takes L, cycles only if it
is performed in response to the Last Ack event (otherwise it gets done
while the data is copied 1o cache).

A CPU read or write that generates a replacement event issues the corre-
sponding GetShared or GetModified message before the PutModified
message (e.g., using a writeback buffer).

A cache controller event that sends a request or acknowledgment message
(e.g.. GetShared) has latency Lieng_msg Cycles.

A cache controller event that reads the cache and sends a data message has
latency Lgepg gara CYyCles.

A cache controller event that receives a data message and updates the
cache has latency L., a1

A memory controller incurs Lyeng g, latency when it forwards a request
message.

A memory controller incurs an additional L, cycles for each invalidate
that it must send.

A cache controller incurs latency Lyeng ;g for each invalidate that it re-
ceives (latency is until it sends the Ack message).

A memory controller has latency Lic,q memory Cycles to read memory and
send a data message.

A memory controller has latency Ly e memory 10 Write a data message to
memory (latency is until it sends the Ack message).

A nondata message (e.g., request, invalidate, Ack) has network latency
L cycles

A data message has network latency Ly, meg CYCleS.

req_msg

Consider an implementation with the performance characteristics summarized in
Figure 4.45.
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Implementation 1

Action Latency
send_msg 6
send_data 20
rcv_data 15
read_memory 100
write_memory 20
inv

ack 4
req_msg 15
data_msg 30

Figure 4.45 Directory coherence latencies.

For the sequences of operations below, the cache contents of Figure 4.42, and the
directory protocol above, what is the latency observed by each processor node?

a. [20} <4.4>P0: read 100
b. [20]} <4.4>P0: read 128
c. [20]<4.4>P0: write 128 <-- 68
d. [20] <4.4>P0: write 120 <-- 50
e. [20]<4.4>P0: write 108 <-- 80

[20] <4.4> In the case of a cache miss, both the switched snooping protocol
described earlier and the directory protocol in this case study perform the read or
write operation as soon as possible. In particular, they do the operation as part of
the transition to the stable state, rather than transitioning to the stable state and
simply retrying the operation. This is not an optimization. Rather, to ensure for-
ward progress, protocol implementations must ensure that they perform at least
one CPU operation before relinquishing a block.

Suppose the coherence protocol implementation didn’t do this. Explain how this
might lead to livelock. Give a simple code example that could stimulate this
behavior.

[20/30] <4.4> Some directory protocols add an Owned (O) state to the protocol,
similar to the optimization discussed for snooping protocols. The Owned state
behaves like the Shared state, in that nodes may only read Owned blocks. But it
behaves like the Modified state, in that nodes must supply data on other nodes’ Get
requests to Owned blocks. The Owned state eliminates the case where a GetShared
request to a block in state Modified requires the node to send the data both to the
requesting processor and to the memory. In a MOSI directory protocol, a Get-
Shared request to a block in either the Moditied or Owned states supplies data to
the requesting node and transitions to the Owned state. A GetModified request in
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state Owned is handled like a request in state Modified. This optimized MOSI pro-
tocol only updates memory when a node replaces a block in state Modified or
Owned.

a. [20] <4.4> Explain why the MS? state in the protocol is essentially a “tran-
sient” Owned state.

b. [30] <4.4> Modify the cache and directory protocol tables to support a stable
Owned state.

[25/25] <4.4> The advanced directory protocol described above relies on a point-

to-point ordered interconnect to ensure correct operation. Assuming the initial

cache contents of Figure 4.42 and the following sequences of operations, explain

what problem could arise if the interconnect failed to maintain point-to-point

ordering. Assume that the processors perform the requests at the same time. but

they are processed by the directory in the order shown.

a. [25]<4.4> Pl: read 110

P15: write 110 <-- 90
b. [25]<4.4> Pl: read 110

PO: replace 110
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